Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 3 of 3
  • Placeholder
    Publication
    An information theoretic approach to classify cognitive states using fMRI
    (Institute of Electrical and Electronics Engineers (IEEE), 2013) Onal, Itir; Ozay, Mete; Firat, Orhan; Vural, Fatos T. Yarman; Department of Psychology; Öztekin, İlke; Faculty Member; Department of Psychology; College of Social Sciences and Humanities; N/A
    In this study, an information theoretic approach is proposed to model brain connectivity during a cognitive processing task, measured by functional Magnetic Resonance Imaging (fMRI). For this purpose, a local mesh of varying size is formed around each voxel. The arc weights of each mesh are estimated using a linear regression model by minimizing the squared error. Then, the optimal mesh size for each sample, that represents the information distribution in the brain, is estimated by minimizing various information criteria which employ the mean square error of linear regression model. The estimated mesh size shows the degree of locality or degree of connectivity of the voxels for the underlying cognitive process. The samples are generated during an fMRI experiment employing item recognition (IR) and judgment of recency (JOR) tasks. For each sample, estimated arc weights of the local mesh with optimal size are used to classify whether it belongs to IR or JOR tasks. Results indicate that the suggested connectivity model with optimal mesh size for each sample represent the information distribution in the brain better than the state-of-the art methods.
  • Placeholder
    Publication
    Analyzing the information distribution in the fMRI measurements by estimating the degree of locality
    (Institute of Electrical and Electronics Engineers (IEEE), 2013) Onal, Itir; Ozay, Mete; Firat, Orhan; Yarman Vural, Fatos T.; Department of Psychology; Öztekin, İlke; Faculty Member; Department of Psychology; College of Social Sciences and Humanities; N/A
    In this study, we propose a new method for analyzing and representing the distribution of discriminative information for data acquired via functional Magnetic Resonance Imaging (fMRI). For this purpose, we form a spatially local mesh with varying size, around each voxel, called the seed voxel. The relationship among each seed voxel and its neighbors is estimated using a linear regression model by minimizing the square error. Then, we estimate the optimal mesh size that represents the connections among each seed voxel and its surroundings by minimizing Akaike's Final Prediction Error (FPE) with respect to the mesh size. The degree of locality is represented by the optimum mesh size. Our results indicate that the local mesh size with the highest discriminative power varies across individual participants. The proposed method was tested on an fMRI study consisting of item recognition (IR) and judgment of recency (JOR) tasks. For each participant, the estimated arc weights of each local mesh with different mesh size are used to classify the type of memory judgment (i.e.IR or JOR). Classification accuracy for each participant was derived using k-Nearest Neighbor (k-NN) method. The results indicate that the proposed local mesh model with optimal mesh size can successfully represent discriminative information for neuroimaging data.
  • Placeholder
    Publication
    Representation of cognitive processes using the minimum spanning tree of local meshes
    (Institute of Electrical and Electronics Engineers (IEEE), 2013) Firat, Orhan; Ozay, Mete; Onal, Itir; Yarman Vural, Fatos T.; Department of Psychology; Öztekin, İlke; Faculty Member; Department of Psychology; College of Social Sciences and Humanities; N/A
    A new graphical model called Cognitive Process Graph (CPG) is proposed, for classifying cognitive processes based on neural activation patterns which are acquired via functional Magnetic Resonance Imaging (fMRI) in brain. In the CPG, first local meshes are formed around each voxel. Second, the relationships between a voxel and its neighbors in a local mesh, which are estimated by using a linear regression model, are used to form the edges among the voxels (graph nodes) in the CPG. Then, a minimum spanning tree (MST) of the CPG which spans all the voxels in the region of interest is computed. The arc weights of the MST are used to represent the underlying cognitive processes. The proposed method reduces the curse of dimensionality problem that is caused by very large dimension of the feature space of the fMRI measurements, compared to number of instances. Finally, the arc weights computed over the path of the MST called MST-Features (MST-F) are used to train a statistical learning machine. The proposed method is tested on a recognition memory experiment, including data pertaining to encoding and retrieval of words belonging to ten different semantic categories. Two popular classifiers, namely k-Nearest Neighbor (k-NN) and Support Vector Machine (SVM), are trained in order to predict the semantic category of the item being retrieved, based on activation patterns during encoding. The classification performance of the proposed learning modelis superior to the classical multi-voxel pattern analysis (MVPA) methods for the underlying cognitive process.