Research Outputs
Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2
Browse
6 results
Search Results
Publication Open Access 3D printing of elastomeric bioinspired complex adhesive microstructures(Wiley, 2021) Dayan, Cem Balda; Chun, Sungwoo; Krishna Subbaiah, Nagaraj; Drotlef, Dirk Michael; Akolpoğlu, Mükrime Birgül; Department of Mechanical Engineering; Sitti, Metin; Faculty Member; Department of Mechanical Engineering; College of Engineering; School of Medicine; 297104Bioinspired elastomeric structural adhesives can provide reversible and controllable adhesion on dry/wet and synthetic/biological surfaces for a broad range of commercial applications. Shape complexity and performance of the existing structural adhesives are limited by the used specific fabrication technique, such as molding. To overcome these limitations by proposing complex 3D microstructured adhesive designs, a 3D elastomeric microstructure fabrication approach is implemented using two-photon-polymerization-based 3D printing. A custom aliphatic urethane-acrylate-based elastomer is used as the 3D printing material. Two designs are demonstrated with two combined biological inspirations to show the advanced capabilities enabled by the proposed fabrication approach and custom elastomer. The first design focuses on springtail- and gecko-inspired hybrid microfiber adhesive, which has the multifunctionalities of side-surface liquid super-repellency, top-surface liquid super-repellency, and strong reversible adhesion features in a single fiber array. The second design primarily centers on octopus- and gecko-inspired hybrid adhesive, which exhibits the benefits of both octopus- and gecko-inspired microstructured adhesives for strong reversible adhesion on both wet and dry surfaces, such as skin. This fabrication approach could be used to produce many other 3D complex elastomeric structural adhesives for future real-world applications.Publication Open Access Liquid crystal eastomer actuated reconfigurable microscale kirigami metastructures(Wiley, 2021) Zhang, Mingchao; Shahsavan, Hamed; Guo, Yubing; Pena-Francesch, Abdon; Zhang, Yingying; Department of Mechanical Engineering; Sitti, Metin; Faculty Member; Department of Mechanical Engineering; College of Engineering; School of Medicine; 297104Programmable actuation of metastructures with predesigned geometrical configurations has recently drawn significant attention in many applications, such as smart structures, medical devices, soft robotics, prosthetics, and wearable devices. Despite remarkable progress in this field, achieving wireless miniaturized reconfigurable metastructures remains a challenge due to the difficult nature of the fabrication and actuation processes at the micrometer scale. Herein, microscale thermo-responsive reconfigurable metasurfaces using stimuli-responsive liquid crystal elastomers (LCEs) is fabricated as an artificial muscle for reconfiguring the 2D microscale kirigami structures. Such structures are fabricated via two-photon polymerization with sub-micrometer precision. Through rationally designed experiments guided by simulations, the optimal formulation of the LCE artificial muscle is explored and the relationship between shape transformation behaviors and geometrical parameters of the kirigami structures is build. As a proof of concept demonstration, the constructs for temperature-dependent switching and information encryption is applied. Such reconfigurable kirigami metastructures have significant potential for boosting the fundamental small-scale metastructure research and the design and fabrication of wireless functional devices, wearables, and soft robots at the microscale as well.Publication Open Access Liquid crystal structure of supercooled liquid gallium and eutectic gallium-indium(Wiley, 2021) Yunusa, Muhammad; Adaka, Alex; Aghakhani, Amirreza; Shahsavan, Hamed; Guo, Yubing; Alapan, Yunus; Jakli, Antal; Department of Mechanical Engineering; Sitti, Metin; Faculty Member; Department of Mechanical Engineering; College of Engineering; School of Medicine; 297104Understanding the origin of structural ordering in supercooled liquid gallium (Ga) has been a great scientific quest in the past decades. Here, reflective polarized optical microscopy on Ga sandwiched between glasses treated with rubbed polymers reveals the onset of an anisotropic reflection at 120 degrees C that increases on cooling and persists down to room temperature or below. The polymer rubbing usually aligns the director of thermotropic liquid crystals (LCs) parallel to the rubbing direction. On the other hand, when Ga is sandwiched between substrates that align conventional LC molecules normal to the surface, the reflection is isotropic, but mechanical shear force induces anisotropic reflection that relaxes in seconds. Such alignment effects and shear-induced realignment are typical to conventional thermotropic LCs and indicate a LC structure of liquid Ga. Specifically, Ga textures obtained by atomic force and scanning electron microscopy reveal the existence of a lamellar structure corresponding to a smectic LC phase, while the nanometer-thin lamellar structure is transparent under transmission polarized optical microscopy. Such spatial molecular arrangements may be attributed to dimer molecular entities in the supercooled liquid Ga. The LC structure observation of electrically conductive liquid Ga can provide new opportunities in materials science and LC applications.Publication Open Access Machine learning-based and experimentally validated optimal adhesive fibril designs(Wiley, 2021) Son, Donghoon; Liimatainen, Ville; Department of Mechanical Engineering; Sitti, Metin; Faculty Member; Department of Mechanical Engineering; College of Engineering; School of Medicine; 297104Setae, fibrils located on a gecko's feet, have been an inspiration of synthetic dry microfibrillar adhesives in the last two decades for a wide range of applications due to unique properties: residue-free, repeatable, tunable, controllable and silent adhesion; self-cleaning; and breathability. However, designing dry fibrillar adhesives is limited by a template-based-design-approach using a pre-determined bioinspired T- or wedge-shaped mushroom tip. Here, a machine learning-based computational approach to optimize designs of adhesive fibrils is shown, exploring a much broader design space. A combination of Bayesian optimization and finite element methods creates novel optimal designs of adhesive fibrils, which are fabricated by two-photon-polymerization-based 3D microprinting and double-molding-based replication out of polydimethylsiloxane. Such optimal elastomeric fibril designs outperform previously proposed designs by maximum 77% in the experiments of dry adhesion performance on smooth surfaces. Furthermore, finite-element-analyses reveal that the adhesion of the fibrils is sensitive to the 3D fibril stem shape, tensile deformation, and fibril microfabrication limits, which contrast with the previous assumptions that mostly neglect the deformation of the fibril tip and stem, and focus only on the fibril tip geometry. The proposed computational fibril design could help design future optimal fibrils with less help from human intuition.Publication Open Access Optimization of room-temperature continuous-wave cr (4+)-Doped solid-state lasers: experiment and modeling(Institute of Electrical and Electronics Engineers (IEEE), 2001) Department of Physics; Sennaroğlu, Alphan; Faculty Member; Department of Physics; College of Sciences; 23851A novel study to determine the optimum crystal and resonator parameters for Cr4+ doped lasers subjected to lifetime thermal loading was permormed. The comparison of the results of lasing threshold, pump absorption saturation, and power efficiency measurements was done with the predictions of a theoretical model to determine the laser cross sections. Using the best-fit cross-section values, numerical optimization studies were carried out to determine the optimum crystal absorption, resonator reflectivity, and crystal length which maximized the output power.Publication Restricted Z2 Topological insulators and the quantum spin hall effect on triangular optical lattices(Koç University, 2014) Ardabili, Ahad Khaleghi; Dereli, Tekin; 0000-0002-6244-6054; Koç University Graduate School of Sciences and Engineering; Physics; 201358