Research Outputs
Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2
Browse
53 results
Search Results
Publication Open Access 3D microprinting of iron platinum nanoparticle-based magnetic mobile microrobots(Wiley, 2021) Giltinan, Joshua; Sridhar, Varun; Bozüyük, Uğur; Sheehan, Devin; Department of Mechanical Engineering; Sitti, Metin; Faculty Member; Department of Mechanical Engineering; School of Medicine; College of Engineering; 297104Wireless magnetic microrobots are envisioned to revolutionize minimally invasive medicine. While many promising medical magnetic microrobots are proposed, the ones using hard magnetic materials are not mostly biocompatible, and the ones using biocompatible soft magnetic nanoparticles are magnetically very weak and, therefore, difficult to actuate. Thus, biocompatible hard magnetic micro/nanomaterials are essential toward easy-to-actuate and clinically viable 3D medical microrobots. To fill such crucial gap, this study proposes ferromagnetic and biocompatible iron platinum (FePt) nanoparticle-based 3D microprinting of microrobots using the two-photon polymerization technique. A modified one-pot synthesis method is presented for producing FePt nanoparticles in large volumes and 3D printing of helical microswimmers made from biocompatible trimethylolpropane ethoxylate triacrylate (PETA) polymer with embedded FePt nanoparticles. The 30 mu m long helical magnetic microswimmers are able to swim at speeds of over five body lengths per second at 200Hz, making them the fastest helical swimmer in the tens of micrometer length scale at the corresponding low-magnitude actuation fields of 5-10mT. It is also experimentally in vitro verified that the synthesized FePt nanoparticles are biocompatible. Thus, such 3D-printed microrobots are biocompatible and easy to actuate toward creating clinically viable future medical microrobots.Publication Metadata only A dynamic path planning approach for multirobot sensor-based coverage considering energy constraints(IEEE-Inst Electrical Electronics Engineers Inc, 2014) Yazici, Ahmet; Parlaktuna, Osman; Sipahioglu, Aydin; N/A; Kirlik, Gökhan; PhD Student; Graduate School of Sciences and Engineering; N/AMultirobot sensor-based coverage path planning determines a tour for each robot in a team such that every point in a given workspace is covered by at least one robot using its sensors. In sensor-based coverage of narrow spaces, i.e., obstacles lie within the sensor range, a generalized Voronoi diagram (GVD)-based graph can be used to model the environment. A complete sensor-based coverage path plan for the robot team can be obtained by using the capacitated arc routing problem solution methods on the GVD-based graph. Unlike capacitated arc routing problem, sensor-based coverage problem requires to consider two types of edge demands. Therefore, modified Ulusoy algorithm is used to obtain mobile robot tours by taking into account two different energy consumption cases during sensor-based coverage. However, due to the partially unknown nature of the environment, the robots may encounter obstacles on their tours. This requires a replanning process that considers the remaining energy capacities and the current positions of the robots. In this paper, the modified Ulusoy algorithm is extended to incorporate this dynamic planning problem. A dynamic path-planning approach is proposed for multirobot sensor-based coverage of narrow environments by considering the energy capacities of the mobile robots. The approach is tested in a laboratory environment using Pioneer 3-DX mobile robots. Simulations are also conducted for a larger test environment.Publication Metadata only A mixed basis with off-center Gaussian functions for the calculation of the potential energy surfaces for pi-stacking interactions: dimers of benzene and planar C-6(Springer, 2015) Department of Chemistry; Yurtsever, İsmail Ersin; Faculty Member; Department of Chemistry; College of Sciences; 7129A practical mixed basis set was developed to facilitate accurate calculations of potential energy surfaces for pi-stacking interactions. Correlation consistent basis sets (cc-PVXZ) were augmented by p-type Gaussian functions placed above and below the planes of C-6 moieties. Moller-Plesset (MP2, SCS-MP2) and coupled cluster [CCSD(T)] calculations show that such generated basis sets provide an accurate description of p-stacking systems with favorable computation times compared to the standard augmented basis sets. The addition of these off-center functions eliminates the linear dependence of the augmented basis sets, which is one of the most encountered numerical problems during calculation of the oligomers of polyaromatic hydrocarbons (PAH). In this work, we present a comparative study of the general characteristics of the potential energy surfaces for the parallel stacked and T-shape conformations of benzene and planar C6 clusters, using a combination of cc-PVXZ and our optimized functions. We discuss properties, such as the depth and curvature of the potential functions, short and long distance behavior, and the frictional forces between two model monomers.Publication Metadata only A multitask multiple kernel learning formulation for discriminating early- and late-stage cancers(Oxford University Press (OUP), 2020) N/A; N/A; Department of Industrial Engineering; Rahimi, Arezou; Gönen, Mehmet; PhD Student; Faculty Member; Department of Industrial Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 237468Motivation: Genomic information is increasingly being used in diagnosis, prognosis and treatment of cancer. The severity of the disease is usually measured by the tumor stage. Therefore, identifying pathways playing an important role in progression of the disease stage is of great interest. Given that there are similarities in the underlying mechanisms of different cancers, in addition to the considerable correlation in the genomic data, there is a need for machine learning methods that can take these aspects of genomic data into account. Furthermore, using machine learning for studying multiple cancer cohorts together with a collection of molecular pathways creates an opportunity for knowledge extraction. Results: We studied the problem of discriminating early- and late-stage tumors of several cancers using genomic information while enforcing interpretability on the solutions. To this end, we developed a multitask multiple kernel learning (MTMKL) method with a co-clustering step based on a cutting-plane algorithm to identify the relationships between the input tasks and kernels. We tested our algorithm on 15 cancer cohorts and observed that, in most cases, MTMKL outperforms other algorithms (including random forests, support vector machine and single-task multiple kernel learning) in terms of predictive power. Using the aggregate results from multiple replications, we also derived similarity matrices between cancer cohorts, which are, in many cases, in agreement with available relationships reported in the relevant literature.Publication Open Access A novel haptic feature set for the classification of interactive motor behaviors in collaborative object transfer(Institute of Electrical and Electronics Engineers (IEEE), 2021) Küçükyılmaz, Ayşe; Department of Mechanical Engineering; Başdoğan, Çağatay; Şirintuna, Doğanay; Al-Saadi, Zaid Rassim Mohammed; Faculty Member; Department of Mechanical Engineering; College of Engineering; Graduate School of Sciences and Engineering; 125489; N/A; N/AHaptics provides a natural and intuitive channel of communication during the interaction of two humans in complex physical tasks, such as joint object transportation. However, despite the utmost importance of touch in physical interactions, the use of haptics is under-represented when developing intelligent systems. This article explores the prominence of haptic data to extract information about underlying interaction patterns within physical human-human interaction (pHHI). We work on a joint object transportation scenario involving two human partners, and show that haptic features, based on force/torque information, suffice to identify human interactive behavior patterns. We categorize the interaction into four discrete behavior classes. These classes describe whether the partners work in harmony or face conflicts while jointly transporting an object through translational or rotational movements. In an experimental study, we collect data from 12 human dyads and verify the salience of haptic features by achieving a correct classification rate over 91% using a Random Forest classifier.Publication Metadata only A review of surface haptics: enabling tactile effects on touch surfaces(Institute of Electrical and Electronics Engineers (IEEE) Computer Society, 2020) Giraud, Frederic; Levesque, Vincent; Choi, Seungmoon; Department of Mechanical Engineering; Başdoğan, Çağatay; Faculty Member; Department of Mechanical Engineering; College of Engineering; 125489In this article, we review the current technology underlying surface haptics that converts passive touch surfaces to active ones (machine haptics), our perception of tactile stimuli displayed through active touch surfaces (human haptics), their potential applications (human-machine interaction), and finally, the challenges ahead of us in making them available through commercial systems. This article primarily covers the tactile interactions of human fingers or hands with surface-haptics displays by focusing on the three most popular actuation methods: vibrotactile, electrostatic, and ultrasonic.Publication Metadata only A strategy based on protein-protein interface motifs may help in identifying drug off-targets(American Chemical Society (ACS), 2012) Nussinov, Ruth; Department of Chemical and Biological Engineering; Department of Computer Engineering; Keskin, Özlem; Gürsoy, Attila; Ergin, Billur Çelebi; Faculty Member; Faculty Member; Teaching Faculty; Department of Chemical and Biological Engineering; Department of Computer Engineering; The Center for Computational Biology and Bioinformatics (CCBB); College of Engineering; College of Engineering; 26605; 8745; 261792Networks are increasingly used to study the impact of drugs at the systems level. From the algorithmic standpoint, a drug can "attack" nodes or edges of a protein-protein interaction network In this work, we propose a new network strategy, "The Interface Attack", based on protein-protein interfaces. Similar interface architectures can occur between unrelated proteins. Consequently, in principle, a drug that binds to one has a certain probability of binding to others. The interface attack strategy simultaneously removes from the network all interactions that consist of similar interface motifs. This strategy is inspired by network pharmacology and allows inferring potential off-targets. We introduce a network model that we call "Protein Interface and Interaction Network (P2IN)", which is the integration of protein-protein interface structures and protein interaction networks. This interface based, network organization clarifies which protein pairs have structurally similar interfaces and which proteins may compete to bind the same surface region. We built the P2IN with the p53 signaling network and performed network robustness analysis. We show that (1) "hitting" frequent interfaces (a set of edges distributed around the network) might be as destructive as eleminating high degree proteins (hub nodes), (2) frequent interfaces are not always topologically critical elements in the network, and (3) interface attack may reveal functional changes in the system better than the attack of single proteins. In the off target detection case study, we found that drugs blocking the interface between CDK6 and CDKN2D may also affect the interaction between CDK4 and CDKN2D.Publication Metadata only Adaptive tracking algorithm for trajectory analysis of cells and layer-by-layer assessment of motility dynamics(Pergamon-Elsevier Science Ltd, 2022) Bayraktar, Halil; N/A; Department of Molecular Biology and Genetics; Qureshi, Mohammad Haroon; PhD Student; Faculty Member; Department of Molecular Biology and Genetics; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); N/A; Graduate School of Sciences and Engineering; College of Sciences; N/A; 105301Tracking biological objects such as cells or subcellular components imaged with time-lapse microscopy enables us to understand the molecular principles about the dynamics of cell behaviors. However, automatic object detection, segmentation and extracting trajectories remain as a rate-limiting step due to intrinsic challenges of video processing. This paper presents an adaptive tracking algorithm (Adtari) that automatically finds the op-timum search radius and cell linkages to determine trajectories in consecutive frames. A critical assumption in most tracking studies is that displacement remains unchanged throughout the movie and cells in a few frames are usually analyzed to determine its magnitude. Tracking errors and inaccurate association of cells may occur if the user does not correctly evaluate the value or prior knowledge is not present on cell movement. The key novelty of our method is that minimum intercellular distance and maximum displacement of cells between frames are dynamically computed and used to determine the threshold distance. Since the space between cells is highly variable in a given frame, our software recursively alters the magnitude to determine all plausible matches in the trajectory analysis. Our method therefore eliminates a major preprocessing step where a constant distance was used to determine the neighbor cells in tracking methods. Cells having multiple overlaps and splitting events were further evaluated by using the shape attributes including perimeter, area, ellipticity and distance. The features were applied to determine the closest matches by minimizing the difference in their magnitudes. Finally, reporting section of our software were used to generate instant maps by overlaying cell features and trajectories. Adtari was validated by using videos with variable signal-to-noise, contrast ratio and cell density. We compared the adaptive tracking with constant distance and other methods to evaluate performance and its efficiency. Our algorithm yields reduced mismatch ratio, increased ratio of whole cell track, higher frame tracking efficiency and allows layer-by-layer assessment of motility to characterize single-cells. Adaptive tracking provides a reliable, accurate, time efficient and user-friendly open source software that is well suited for analysis of 2D fluorescence microscopy video datasets.Publication Metadata only Analysis of single amino acid variations in singlet hot spots of protein-protein interfaces(Oxford Univ Press, 2018) N/A; N/A; Department of Computer Engineering; Department of Chemical and Biological Engineering; Özdemir, E. Sıla; Gürsoy, Attila; Keskin, Özlem; PhD Student; Faculty Member; Faculty Member; Department of Computer Engineering; Department of Chemical and Biological Engineering; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; N/A; 8745; 26605Motivation: Single amino acid variations (SAVs) in protein-protein interaction (PPI) sites play critical roles in diseases. PPI sites (interfaces) have a small subset of residues called hot spots that contribute significantly to the binding energy, and they may form clusters called hot regions. Singlet hot spots are the single amino acid hot spots outside of the hot regions. The distribution of SAVs on the interface residues may be related to their disease association. Results: We performed statistical and structural analyses of SAVs with literature curated experimental thermodynamics data, and demonstrated that SAVs which destabilize PPIs are more likely to be found in singlet hot spots rather than hot regions and energetically less important interface residues. In contrast, non-hot spot residues are significantly enriched in neutral SAVs, which do not affect PPI stability. Surprisingly, we observed that singlet hot spots tend to be enriched in disease-causing SAVs, while benign SAVs significantly occur in non-hot spot residues. Our work demonstrates that SAVs in singlet hot spot residues have significant effect on protein stability and function.Publication Open Access B-tensor: brain connectome tensor factorization for Alzheimer's disease(Institute of Electrical and Electronics Engineers (IEEE), 2021) Durusoy, Göktekin; Yıldırım, Zerrin; Dal, Demet Yüksel; Ulaşoğlu-Yıldız, Çiğdem; Kurt, Elif; Bayır, Güneş; Özacar, Erhan; Özarslan, Evren; Demirtaş-Tatlıdede, Aslı; Bilgiç, Başar; Demiralp, Tamer; Gürvit, Hakan; Acar, Burak; Department of Physics; Kabakçıoğlu, Alkan; Faculty Member; Department of Physics; College of Sciences; 49854AD is the highly severe part of the dementia spectrum and impairs cognitive abilities of individuals, bringing economic, societal and psychological burdens beyond the diseased. A promising approach in AD research is the analysis of structural and functional brain connectomes, i.e., sNETs and fNETs, respectively. We propose to use tensor representation (B-tensor) of uni-modal and multi-modal brain connectomes to define a low-dimensional space via tensor factorization. We show on a cohort of 47 subjects, spanning the spectrum of dementia, that diagnosis with an accuracy of 77% to 100% is achievable in a 5D connectome space using different structural and functional connectome constructions in a uni-modal and multi-modal fashion. We further show that multi-modal tensor factorization improves the results suggesting complementary information in structure and function. A neurological assessment of the connectivity patterns identified largely agrees with prior knowledge, yet also suggests new associations that may play a role in the disease progress.