Research Outputs
Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2
Browse
258 results
Filters
Advanced Search
Filter by
Settings
Search Results
Publication Metadata only 300 GHz broadband transceiver design for low-THz band wireless communications in indoor internet of things(Ieee, 2017) N/A; Department of Electrical and Electronics Engineering; N/A; Department of Electrical and Electronics Engineering; Khalid, Nabil; Abbasi, Naveed Ahmed; Akan, Özgür Barış; Researcher; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 6647This paper presents the architectural design of a 300 GHz transceiver system that can be used to explore the high speed communication opportunities offered by the Terahertz (THz) band for advanced applications of Internet-of-Things (IoT). We use low cost industry ready components to prepare a fully customizable THz band communication system that provides a bandwidth of 20 GHz that is easily extendable up to 40 GHz. Component parameters arc carefully observed and used in simulations to predict the system performance while the compatibility of different components is ensured to produce a reliable design. Our results show that the receiver provides a conversion gain of 51 dB with a noise figure (NE) of 9.56 dB to achieve a data rate of 90.31 Gbps at an operation range of 2 meters, which is suitable for high speed indoor IoT nodes. The flexible design of the transceiver provides groundwork for further research efforts in 5G IoT applications and pushing boundaries of throughputs to the order of terabits per second (Tbps).Publication Metadata only 3D display dependent quality evaluation and rate allocation using scalable video coding(Ieee, 2009) N/A; N/A; Department of Electrical and Electronics Engineering; Saygılı, Görkem; Gürler, Cihat Göktuğ; Tekalp, Ahmet Murat; Master Student; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 26207It is well known that the human visual system can perceive high frequency content in 3D, even if that information is present in only one of the views. Then, the best 3D perception quality may be achieved by allocating the rates of the reference (right) and auxiliary (left) views asymmetrically. However the question of whether the rate reduction for the auxiliary view should be achieved by spatial resolution reduction (coding a downsampled version of the video followed by upsampling after decoding) or quality (QP) reduction is an open issue. This paper shows that which approach should be preferred depends on the 3D display technology used at the receiver. Subjective tests indicate that users prefer lower quality (larger QP) coding of the auxiliary view over lower resolution coding if a "full spatial resolution" 3D display technology (such as polarized projection) is employed. On the other hand, users prefer lower resolution coding of the auxiliary view over lower quality coding if a "reduced spatial resolution" 3D display technology (such as parallax barrier - autostereoscopic) is used. Therefore, we conclude that for 3D IPTV services, while receiving full quality/resolution reference view, users should subscribe to differently scaled versions of the auxiliary view depending on their 3D display technology. We also propose an objective 3D video quality measure that takes the 3D display technology into account.Publication Metadata only 3D model retrieval using probability density-based shape descriptors(IEEE Computer Society, 2009) Akgul, Ceyhun Burak; Sankur, Buelent; Schmitt, Francis; Department of Computer Engineering; Yemez, Yücel; Faculty Member; Department of Computer Engineering; College of Engineering; 107907We address content-based retrieval of complete 3D object models by a probabilistic generative description of local shape properties. The proposed shape description framework characterizes a 3D object with sampled multivariate probability density functions of its local surface features. This density-based descriptor can be efficiently computed via kernel density estimation (KDE) coupled with fast Gauss transform. The nonparametric KDE technique allows reliable characterization of a diverse set of shapes and yields descriptors which remain relatively insensitive to small shape perturbations and mesh resolution. Density-based characterization also induces a permutation property which can be used to guarantee invariance at the shape matching stage. As proven by extensive retrieval experiments on several 3D databases, our framework provides state-of-the-art discrimination over a broad and heterogeneous set of shape categories.Publication Metadata only 3D shape correspondence by isometry-driven greedy optimization(IEEE Computer Soc, 2010) N/A; Department of Computer Engineering; Sahillioğlu, Yusuf; Yemez, Yücel; PhD Student; Faculty Member; Department of Computer Engineering; Graduate School of Sciences and Engineering; College of Engineering; 215195; 107907We present an automatic method that establishes 3D correspondence between isometric shapes. Our goal is to find an optimal correspondence between two given (nearly) isometric shapes, that minimizes the amount of deviation from isometry. We cast the problem as a complete surface correspondence problem. Our method first divides the given shapes to be matched into surface patches of equal area and then seeks for a mapping between the patch centers which we refer to as base vertices. Hence the correspondence is established in a fast and robust manner at a relatively coarse level as imposed by the patch radius. We optimize the isometry cost in two steps. in the first step, the base vertices are transformed into spectral domain based on geodesic affinity, where the isometry errors are minimized in polynomial time by complete bipartite graph matching. the resulting correspondence serves as a good initialization for the second step of optimization in which we explicitly minimize the isometry cost via an iterative greedy algorithm in the original 3D Euclidean space. We demonstrate the performance of our method on various isometric (or nearly isometric) pairs of shapes for some of which the ground-truth correspondence is available.Publication Metadata only A blind separation approach for magnitude bounded sources(IEEE, 2005) Department of Electrical and Electronics Engineering; Erdoğan, Alper Tunga; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 41624A novel blind source separation approach for channels with and without memory is introduced. The proposed approach makes use of pre-whitening procedure to convert the original convolutive channel into a lossless and memoryless one. Then a blind subgradient algorithm, which corresponds to an l(infinity) norm based criterion, is used for the separation of sources. The proposed separation algorithm exploits the assumed boundedness of the original sources and it has a simple update rule. The typical performance of the algorithm is illustrated through simulation examples where separation is achieved with only small numbers of iterations.Publication Metadata only A classification of concurrency bugs in java benchmarks by developer intent(Association for Computing Machinery (ACM), 2006) Department of Computer Engineering; Department of Computer Engineering; N/A; Keremoğlu, M. Erkan; Taşıran, Serdar; Elmas, Tayfun; Researcher; Faculty Member; PhD Student; Department of Computer Engineering; College of Engineering; College of Engineering; Graduate School of Sciences and Engineering; N/A; N/A; N/AThis work addresses the issue of selecting the formal correctness criterion for a concurrent Java program that best corresponds to the developer's intent. We study a set of concurrency-related bugs detected in Java benchmarks reported in the literature. On these programs, we determine whether race-freedom, atomicity or refinement is the simplest and most appropriate criterion for program correctness. Our purpose is to demonstrate empirically the fact that the appropriate fix for a concurrency error and the selection of a program analysis tool for detecting such an error must be based on the proper expression of the designer's intent using a formal correctness criterion.Publication Open Access A deep learning approach for data driven vocal tract area function estimation(Institute of Electrical and Electronics Engineers (IEEE), 2018) Department of Computer Engineering; Department of Electrical and Electronics Engineering; Erzin, Engin; Asadiabadi, Sasan; Faculty Member; Department of Computer Engineering; Department of Electrical and Electronics Engineering; College of Sciences; Graduate School of Sciences and Engineering; 34503; N/AIn this paper we present a data driven vocal tract area function (VTAF) estimation using Deep Neural Networks (DNN). We approach the VTAF estimation problem based on sequence to sequence learning neural networks, where regression over a sliding window is used to learn arbitrary non-linear one-to-many mapping from the input feature sequence to the target articulatory sequence. We propose two schemes for efficient estimation of the VTAF; (1) a direct estimation of the area function values and (2) an indirect estimation via predicting the vocal tract boundaries. We consider acoustic speech and phone sequence as two possible input modalities for the DNN estimators. Experimental evaluations are performed over a large data comprising acoustic and phonetic features with parallel articulatory information from the USC-TIMIT database. Our results show that the proposed direct and indirect schemes perform the VTAF estimation with mean absolute error (MAE) rates lower than 1.65 mm, where the direct estimation scheme is observed to perform better than the indirect scheme.Publication Metadata only A deterministic analysis of an online convex mixture of experts algorithm(Institute of Electrical and Electronics Engineers (IEEE), 2015) Özkan, Hüseyin; Dönmez, Mehmet A.; N/A; Tunç, Sait; Master Student; Graduate School of Sciences and Engineering; N/AWe analyze an online learning algorithm that adaptively combines outputs of two constituent algorithms (or the experts) running in parallel to estimate an unknown desired signal. This online learning algorithm is shown to achieve and in some cases outperform the mean-square error (MSE) performance of the best constituent algorithm in the steady state. However, the MSE analysis of this algorithm in the literature uses approximations and relies on statistical models on the underlying signals. Hence, such an analysis may not be useful or valid for signals generated by various real-life systems that show high degrees of nonstationarity, limit cycles and that are even chaotic in many cases. In this brief, we produce results in an individual sequence manner. In particular, we relate the time-accumulated squared estimation error of this online algorithm at any time over any interval to the one of the optimal convex mixture of the constituent algorithms directly tuned to the underlying signal in a deterministic sense without any statistical assumptions. In this sense, our analysis provides the transient, steady-state, and tracking behavior of this algorithm in a strong sense without any approximations in the derivations or statistical assumptions on the underlying signals such that our results are guaranteed to hold. We illustrate the introduced results through examples.Publication Metadata only A discrete-continuous optimization approach for the design and operation of synchromodal transportation networks(Elsevier, 2019) Reşat, Hamdi Giray; Department of Industrial Engineering; Türkay, Metin; Faculty Member; Department of Industrial Engineering; College of Engineering; 24956This paper presents a multi-objective mixed-integer programming problem for integrating specific characteristics of synchromodal transportation. The problem includes different objective functions including total transportation cost, travel time and CO2 emissions while optimizing the proposed network structure. Traffic congestion, time-dependent vehicle speeds and vehicle filling ratios are considered and computational results for different illustrative cases are presented with real data from the Marmara Region of Turkey. The defined non-linear model is converted into linear form and solved by using a customized implementation of the e-constraint method. Then, the sensitivity analysis of proposed mathematical models with pre-processing constraints is summarized for decision makers.Publication Metadata only A dynamic path planning approach for multirobot sensor-based coverage considering energy constraints(IEEE-Inst Electrical Electronics Engineers Inc, 2014) Yazici, Ahmet; Parlaktuna, Osman; Sipahioglu, Aydin; N/A; Kirlik, Gökhan; PhD Student; Graduate School of Sciences and Engineering; N/AMultirobot sensor-based coverage path planning determines a tour for each robot in a team such that every point in a given workspace is covered by at least one robot using its sensors. In sensor-based coverage of narrow spaces, i.e., obstacles lie within the sensor range, a generalized Voronoi diagram (GVD)-based graph can be used to model the environment. A complete sensor-based coverage path plan for the robot team can be obtained by using the capacitated arc routing problem solution methods on the GVD-based graph. Unlike capacitated arc routing problem, sensor-based coverage problem requires to consider two types of edge demands. Therefore, modified Ulusoy algorithm is used to obtain mobile robot tours by taking into account two different energy consumption cases during sensor-based coverage. However, due to the partially unknown nature of the environment, the robots may encounter obstacles on their tours. This requires a replanning process that considers the remaining energy capacities and the current positions of the robots. In this paper, the modified Ulusoy algorithm is extended to incorporate this dynamic planning problem. A dynamic path-planning approach is proposed for multirobot sensor-based coverage of narrow environments by considering the energy capacities of the mobile robots. The approach is tested in a laboratory environment using Pioneer 3-DX mobile robots. Simulations are also conducted for a larger test environment.