Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    PublicationOpen Access
    End-to-end rate-distortion optimization for bi-directional learned video compression
    (Institute of Electrical and Electronics Engineers (IEEE), 2020) Department of Electrical and Electronics Engineering; Yılmaz, Melih; Tekalp, Ahmet Murat; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; N/A; 26207
    Conventional video compression methods employ a linear transform and block motion model, and the steps of motion estimation, mode and quantization parameter selection, and entropy coding are optimized individually due to combinatorial nature of the end-to-end optimization problem. Learned video compression allows end-to-end rate-distortion optimized training of all nonlinear modules, quantization parameter and entropy model simultaneously. While previous work on learned video compression considered training a sequential video codec based on end-to-end optimization of cost averaged over pairs of successive frames, it is well-known in conventional video compression that hierarchical, bi-directional coding outperforms sequential compression. In this paper, we propose for the first time end-to-end optimization of a hierarchical, bi-directional motion compensated learned codec by accumulating cost function over fixed-size groups of pictures (GOP). Experimental results show that the rate-distortion performance of our proposed learned bi-directional GOP coder outperforms the state-of-the-art end-to-end optimized learned sequential compression as expected.