Research Outputs
Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2
Browse
194 results
Filters
Advanced Search
Filter by
Settings
Search Results
Publication Open Access 3D face recognition by projection based methods(Society of Photo-optical Instrumentation Engineers (SPIE), 2006) Dutaǧaci, Helin; Sankur, Bülent; Department of Computer Engineering; Yemez, Yücel; Faculty Member; Department of Computer Engineering; College of EngineeringIn this paper, we investigate recognition performances of various projection-based features applied on registered 3D scans of faces. Some features are data driven, such as ICA-based features or NNMF-based features. Other features are obtained using DFT or DCT-based schemes. We apply the feature extraction techniques to three different representations of registered faces, namely, 3D point clouds, 2D depth images and 3D voxel. We consider both global and local features. Global features are extracted from the whole face data, whereas local features are computed over the blocks partitioned from 2D depth images. The block-based local features are fused both at feature level and at decision level. The resulting feature vectors are matched using Linear Discriminant Analysis. Experiments using different combinations of representation types and feature vectors are conducted on the 3D-RMA dataset.Publication Open Access A challenging design case study for interactive media design education: interactive media for individuals with autism(Springer, 2014) Orhun, Simge Esin; Çimen, Ayça Ünlüer; Department of Media and Visual Arts; Yantaç, Asım Evren; Faculty Member; Department of Media and Visual Arts; College of Social Sciences and Humanities; 52621Since 1999, research for creativity triggering education solutions for interactive media design (IMD) undergraduate level education in Yildiz Technical University leaded to a variety of rule breaking exercises. Among many approaches, the method of designing for disabling environment, in which the students design for the users with one or more of their senses disabled, brought the challenge of working on developing interactive solutions for the individuals with autism spectrum conditions (ASC). With the aim of making their life easier, the design students were urged to find innovative yet functional interaction solutions for this focused user group, whose communicational disability activate due to the deficiencies in their senses and/or cognition. Between 2011 and 2012, this project brief supported by participatory design method motivated 26 students highly to develop design works to reflect the perfect fit of interaction design to this challenging framework involving the defective social communication cases of autism.Publication Open Access A DASH7-based power metering system(Institute of Electrical and Electronics Engineers (IEEE), 2015) Çetinkaya, Oktay; Akan, Özgür Barış; Researcher; College of EngineeringConsidering the inability of the existing energy resources to satisfy the current needs, the right and efficient. use of the energy has become compulsory. To make energy sustainability permanent, management and planning activities should be carried out by arranging the working hours and decreasing the energy wasting. For all these, power metering, managing and controlling systems or plugs has been proposed in recent efforts. Starting from this point, a new DASH7-based Smart Plug (D7SP) is designed and implemented to achieve a better structure compared to ZigBee equipped models and reduce the drawbacks of current applications. DASH7 technology reaches nearly 6 times farther distances in comparison with 2.4 GHz based protocols and provides multi-year battery life as a result of using limited energy during transmission. Performing in the 433 MHz band prevents the possible interference from overcrowded 2.4 GHz and the other frequencies which helps to gather a more reliable working environment. To shorten the single connection delays and human oriented failures, the MCU was shifted directly into the plug from the rear-end device. Working hours arrangement and standby power cutting off algorithms are implemented in addition to these energy saving targeted improvements to enhance more efficient systems. With the collaboration of the conducted hardware and software oriented adjustments and DASH7-based improvements, a more reliable, mobile and efficient system has been obtained in this work.Publication Open Access A deep learning approach for data driven vocal tract area function estimation(Institute of Electrical and Electronics Engineers (IEEE), 2018) Department of Computer Engineering; Department of Electrical and Electronics Engineering; Erzin, Engin; Asadiabadi, Sasan; Faculty Member; Department of Computer Engineering; Department of Electrical and Electronics Engineering; College of Sciences; Graduate School of Sciences and Engineering; 34503; N/AIn this paper we present a data driven vocal tract area function (VTAF) estimation using Deep Neural Networks (DNN). We approach the VTAF estimation problem based on sequence to sequence learning neural networks, where regression over a sliding window is used to learn arbitrary non-linear one-to-many mapping from the input feature sequence to the target articulatory sequence. We propose two schemes for efficient estimation of the VTAF; (1) a direct estimation of the area function values and (2) an indirect estimation via predicting the vocal tract boundaries. We consider acoustic speech and phone sequence as two possible input modalities for the DNN estimators. Experimental evaluations are performed over a large data comprising acoustic and phonetic features with parallel articulatory information from the USC-TIMIT database. Our results show that the proposed direct and indirect schemes perform the VTAF estimation with mean absolute error (MAE) rates lower than 1.65 mm, where the direct estimation scheme is observed to perform better than the indirect scheme.Publication Metadata only A hexagonal grid based human blockage model for the 5G low terahertz band communications(IEEE, 2018) N/A; N/A; Ertürk, Onur; Yılmaz, Türker; PhD Student; PhD Student; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; N/A; N/AUsers continuously demand higher connection speeds and data traffic from wireless communication networks. the newly required network capacity should be provided by higher frequency bands, because legacy sub-6 GHz bands are already operating using advanced communication techniques that provide very high spectral efficiencies. Consequently, millimeter wave communication standards are either complete or ongoing, and general submillimeter wave applications are next in line. accordingly, this paper proposes a motion model in hexagonal grid of a person carrying a user equipment. Electromagnetic wave blockage analyses by utilizing channel characteristics of the low-THz band are presented. Lastly, the communication and blockage probabilities of an exemplary system are both theoretically examined and numerically simulated.Publication Metadata only A moving window approach for blind equalization using subgradient projections(IEEE, 2004) N/A; N/A; Department of Electrical and Electronics Engineering; Kızılkale, Can; Erdoğan, Alper Tunga; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 41624A novel blind equalization method based on a subgradient search over a convex cost surface is examined under a noisy channel and a modification is proposed. This is an alternative to the existing iterative blind equalization approaches such as Constant Modulus Algorithm (CMA) which mostly suffer from the convergence problems caused by their non-convex cost functions. The proposed method is an iterative algorithm, for both real and complex constellations, with a very simple update rule that minimizes the l(infinity) norm of the equalizer output under a linear constraint on the equalizer coefficients. The subgradient based algorithm has a fast convergence behavior attributed to the convex l(infinity) cost surface. A moving window based approach is used in this algorithm to both decrease algorithm's complexity and increase its immunity to noise. / Bu makalede alt-bayır izdüşümleri kullanılarak yapılan kör eşitleme metodunun gürültülü bir kanal için performansı incelenmiş ve bu performansın arttırılması için bir öneride bulunulmuştur. Bu algoritma daha önce önerilen sabit genlik algoritmasi(CMA) gibi özyineli yöntemlere bir alternatif olarak sunulmaktadır. Bilindiği gibi daha once sunulan algoritmalar dışbükey olmayan maliyet işlevlerinden dolayı yakınsallık problemi yaşamaktadırlar. Önerilen yöntem, hem gerçek hem de karmaşık burçlar (constellation) için, denkleştirici katsayıları üzerindeki doğrusal bir kısıt altında denkleştiricinin çıktısını l(infinity), normunu enküçültme esasına dayalı, basit bi güncelleme yapısına sahip özyinelemeli bir algoritmadır. Bu algoritma l(infinity) maliyet yüzeyinin karakterinden dolayı hızlı yakınsama davranışına sahiptir. Algoritmanin hem karmaşıklığını azaltacak hem de gürültüye karşı bağışıklığını yükseltecek hareketli pencereye dayalı bir yapı kullanılmıştır.Publication Metadata only A multi-objective optimization approach for sustainable supply chains incorporating business strategy(IEEE, 2019) N/A; Department of Industrial Engineering; Bozgeyik, Esma Nur; Türkay, Metin; Master Student; Faculty Member; Department of Industrial Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 24956Sustainability is a necessity in the design and operation of supply chains. the triple bottom line (TBL) accounting of sustainability needs to incorporate economic, environmental and social pillars simultaneously in the decision making process. the business strategy can be developed to promote sustained growth, Also incorporating in the supply chain management issues as a business strategy rather than philanthropy. Deciding on the location of business facilities, supplier-manufacturer network, manufacturer-demand location network and the supplier- manufacturer relation strategy are among the important decisions in business strategy and supply chain management. However, there is a lack of theoretical work which analyzes the business strategy together with TBL concept of sustainability for the supply chain network design problem. in this paper, A methodological approach based on mathematical programming is proposed that conforms to the TBL accounting for supply chain network design problem from suppliers to customers embedded with business strategy and green energy usage option. a realistic case study is applied to the model. the results show that working with inclusive suppliers and using green energy are preferred with highest profit value.Publication Metadata only A multitask multiple kernel learning algorithm for survival analysis with application to cancer biology(JMLR-Journal Machine Learning Research, 2019) N/A; Department of Industrial Engineering; Department of Industrial Engineering; Dereli, Onur; Oğuz, Ceyda; Gönen, Mehmet; PhD Student; Faculty Member; Faculty Member; Department of Industrial Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; N/A; 6033; 237468Predictive performance of machine learning algorithms on related problems can be improved using multitask learning approaches. Rather than performing survival analysis on each data set to predict survival times of cancer patients, we developed a novel multitask approach based on multiple kernel learning (MKL). Our multitask MKL algorithm both works on multiple cancer data sets and integrates cancer-related pathways/gene sets into survival analysis. We tested our algorithm, which is named as Path2MSurv, on the Cancer Genome Atlas data sets analyzing gene expression profiles of 7,655 patients from 20 cancer types together with cancer-specific pathway/gene set collections. Path2MSury obtained better or comparable predictive performance when benchmarked against random survival forest, survival support vector machine, and single-task variant of our algorithm. Path2MSury has the ability to identify key pathways/gene sets in predicting survival times of patients from different cancer types.Publication Open Access A new haptic interaction and visualization approach for rigid molecular docking in virtual environments(Massachusetts Institute of Technology (MIT) Press, 2008) Department of Mechanical Engineering; Subaşı, Erk; Başdoğan, Çağatay; Faculty Member; Department of Mechanical Engineering; College of Engineering; N/A; 125489Many biological activities take place through the physicochemical interaction of two molecules. This interaction occurs when one of the molecules finds a suitable location on the surface of the other for binding. This process is known as molecular docking, and it has applications to drug design. If we can determine which drug molecule binds to a particular protein, and how the protein interacts with the bonded molecule, we can possibly enhance or inhibit its activities. This information, in turn, can be used to develop new drugs that are more effective against diseases. In this paper, we propose a new approach based on a human-computer interaction paradigm for the solution of the rigid body molecular docking problem. In our approach, a rigid ligand molecule (i.e., drug) manipulated by the user is inserted into the cavities of a rigid protein molecule to search for the binding cavity, while the molecular interaction forces are conveyed to the user via a haptic device for guidance. We developed a new visualization concept, Active Haptic Workspace (AHW), for the efficient exploration of the large protein surface in high resolution using a haptic device having a small workspace. After the discovery of the true binding site and the rough alignment of the ligand molecule inside the cavity by the user, its final configuration is calculated off-line through time stepping molecular dynamics (MD) simulations. At each time step, the optimum rigid body transformations of the ligand molecule are calculated using a new approach, which minimizes the distance error between the previous rigid body coordinates of its atoms and their new coordinates calculated by the MD simulations. The simulations are continued until the ligand molecule arrives at the lowest energy configuration. Our experimental studies conducted with six human subjects testing six different molecular complexes demonstrate that given a ligand molecule and five potential binding sites on a protein surface, the subjects can successfully identify the true binding site using visual and haptic cues. Moreover, they can roughly align the ligand molecule inside the binding cavity such that the final configuration of the ligand molecule can be determined via the proposed MD simulations.Publication Metadata only A novel reconfigurable intelligent surface-supported code index modulation-based receive spatial modulation system(IEEE-Institute of Electrical and Electronics Engineers, 2024) Ozden, Burak Ahmet; Cogen, Fatih; Aydin, Erdogan; Ilhan, Haci; Wen, Miaowen; Department of Electrical and Electronics Engineering; Başar, Ertuğrul; Department of Electrical and Electronics Engineering; College of EngineeringToday's wireless communication networks have many requirements such as high data rate, high reliability, low latency, low error data transmission, and high energy efficiency. High-performance index modulation (IM) techniques and reconfigurable intelligent surface (RIS) technology, which has recently attracted the attention of researchers, are strong candidates to meet these requirements. This paper introduces a novel RIS-supported code IM-based receive spatial modulation (RIS-CIM-RSM) system. The proposed RIS-CIM-RSM system uses quadrature amplitude modulation (QAM) symbols, receive antenna indices, and spreading code indices for wireless data transmission. In the proposed system, an RIS applies a phase rotation that maximizes signal-to-noise ratio (SNR) to the signals coming to the reflecting elements and directs them to the selected receive antenna. Performance analyses of the proposed RIS-CIM-RSM system such as data rate, throughput, and energy saving are obtained. The results obtained show that the proposed RIS-CIM-RSM system is superior to the counterpart RIS-based IM systems in the literature in terms of data rate, throughput, energy saving, and error performance.