Research Outputs
Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2
Browse
2 results
Search Results
Publication Metadata only A novel magnetomechanical pump to actuate ferrofluids in minichannels(Begell House, Inc, 2011) Bilgin, Alp; Kurtoglu, Evrim; Erk, Hadi Cagdas; Sesen, Muhsincan; Kosar, Ali; Department of Chemistry; Acar, Havva Funda Yağcı; Faculty Member; Department of Chemistry; College of Sciences; 178902An improvement in the current methods of ferrofluid actuation was presented in this paper. A novel magnetomechanical microfluidic pump design was implemented with a ferrofluid as the active working fluid. Obtained flow rates were comparable to previous results in this research line. It was also seen that the basic pump architecture, which the subject pump is based on, enables much more room for further development.Publication Open Access Numerical investigation of design parameters effects on performance of cooling system designed for a lithium-ion cell(Yildiz Technical University / Yıldız Teknik Üniversitesi, 2020) Kızılel, Rıza; Alipour, Mohammad; Researcher; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); 114475; N/AA 3D numerical approach using the Finite Element Method (FEM) is applied to model the thermal behavior of multilayer 20Ah LiFePO4/Graphite cell and to design a cooling system. A three-dimensional multilayer cell model with heterogeneous thermal properties for the various cell layers is developed to study the effects of design parameters on cooling performance of mini-channel aluminum plates. As design parameters, effects of channel width, a number of channel passes, inlet mass flow rate, and heat transfer medium were considered. Using the optimized parameters, the cooling performance of water-cooling and air-cooling systems were compared. The results showed that the designed cooling system provided good cooling performance in controlling the temperature rise and uniformity. Inlet mass flow rate was the main influential parameter in controlling the cooling performance. The optimum number of channel passes was found to be seven passes. Channel width mainly controlled the pressure drop and had minor effects on temperature. At higher discharge current rates, the water-cooling system showed better cooling performance in dropping the maximum temperature and making uniform surface and inner temperature profile. Moreover, pressure drop, and power consumption rates become significantly lower for water cooling system.