Research Outputs
Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2
Browse
41 results
Filters
Advanced Search
Filter by
Settings
Search Results
Publication Metadata only A fast approximate method of identifying paths of allosteric communication in proteins(Wiley, 2013) Department of Chemical and Biological Engineering; Erman, Burak; Faculty Member; Department of Chemical and Biological Engineering; College of Engineering; 179997Fluctuations of the distance between a pair of residues i and j may be correlated with the fluctuations of the distance between another pair k and l. In this case, information may be transmitted among these four residues. Allosteric activity is postulated to proceed through such correlated paths. In this short communication a fast method for calculating correlations among all possible pairs ij and kl leading to a pathway of correlated residues of a protein is proposed. The method is based on the alpha carbon centered Gaussian Network Model. The model is applied to Glutamine Amidotransferase and pathways of allosteric activity are identified and compared with literature. Proteins 2013; 81:1097-1101. (c) 2013 Wiley Periodicals, Inc.Publication Metadata only A new dataset of protein-protein interfaces(Cell Press, 2007) Güney, Emre; Nussinov, Ruth; Tsai, C. J.; Department of Computer Engineering; Department of Chemical and Biological Engineering; Gürsoy, Attila; Keskin, Özlem; Tunçbağ, Nurcan; Faculty Member; Faculty Member; PhD Student; Department of Computer Engineering; Department of Chemical and Biological Engineering; College of Engineering; College of Engineering; 8745; 26605; 245513Publication Metadata only A structural view of negative regulation of the toll-like receptor-mediated inflammatory pathway(Cell Press, 2015) Gursoy, Attila; Nussinov, Ruth; N/A; Department of Chemical and Biological Engineering; Maiorov, Emine Güven; Keskin, Özlem; PhD Student; Faculty Member; Department of Chemical and Biological Engineering; The Center for Computational Biology and Bioinformatics (CCBB); Graduate School of Sciences and Engineering; College of Engineering; N/A; 26605Even though the Toll-like receptor (TLR) pathway is integral to inflammatory defense mechanisms, its excessive signaling may be devastating. Cells have acquired a cascade of strategies to regulate TLR signaling by targeting protein-protein interactions, or ubiquitin chains, but the details of the inhibition mechanisms are still unclear. Here, we provide the structural basis for the regulation of TLR signaling by constructing architectures of protein-protein interactions. Structural data suggest that 1) Toll/IL-1R (TIR) domain-containing regulators (BCAP, SIGIRR, and ST2) interfere with TIR domain signalosome formation; 2) major deubiquitinases such as A20, CYLD, and DUBA prevent association of TRAF6 and TRAF3 with their partners, in addition to removing K63-linked ubiquitin chains that serve as a docking platform for downstream effectors; 3) alternative downstream pathways of TLRs also restrict signaling by competing to bind common partners through shared binding sites. We also performed in silico mutagenesis analysis to characterize the effects of oncogenic mutations on the negative regulators and to observe the cellular outcome (whether there is/is not inflammation). Missense mutations that fall on interfaces and nonsense/frameshift mutations that result in truncated negative regulators disrupt the interactions with the targets, thereby enabling constitutive activation of the nuclear factor-kappa B, and contributing to chronic inflammation, autoimmune diseases, and oncogenesis.Publication Metadata only Attenuation of Type IV pili activity by natural products(Taylor & Francis Inc, 2024) Yalkut, Kerem; Hassine, Soumaya Ben Ali; Kula, Ceyda; Ozcan, Aslihan; Avci, Fatma Gizem; Akbulut, Berna Sariyar; Ozbek, Pemra; Department of Chemical and Biological Engineering; Başaran, Esra; Keskin, Özlem; Department of Chemical and Biological Engineering; Graduate School of Sciences and Engineering; College of EngineeringThe virulence factor Type IV pili (T4P) are surface appendages used by the opportunistic pathogen Pseudomonas aeruginosa for twitching motility and adhesion in the environment and during infection. Additionally, the use of these appendages by P. aeruginosa for biofilm formation increases its virulence and drug resistance. Therefore, attenuation of the activity of T4P would be desirable to control P. aeruginosa infections. Here, a computational approach has been pursued to screen natural products that can be used for this purpose. PilB, the elongation ATPase of the T4P machinery in P. aeruginosa, has been selected as the target subunit and virtual screening of FDA-approved drugs has been conducted. Screening identified two natural compounds, ergoloid and irinotecan, as potential candidates for inhibiting this T4P-associated ATPase in P. aeruginosa. These candidate compounds underwent further rigorous evaluation through molecular dynamics (MD) simulations and then through in vitro twitching motility and biofilm inhibition assays. Notably, ergoloid emerged as a particularly promising candidate for weakening the T4P activity by inhibiting the elongation ATPases associated with T4P. This repurposing study paves the way for the timely discovery of antivirulence drugs as an alternative to classical antibiotic treatments to help combat infections caused by P. aeruginosa and related pathogens.Publication Metadata only Biomolecular systems interactions, dynamics, and allostery: reflections and new directions(Cell Press, 2015) Dyson, Jane; Bahar, Ivet; Department of Chemical and Biological Engineering; Keskin, Özlem; Faculty Member; Department of Chemical and Biological Engineering; College of Engineering; 26605Publication Metadata only Cation transport properties of Amphotericin-B membrane channel(Biophysical Society, 1999) Baginski, Maciej; Department of Physics; Reşat, Haluk; Faculty Member; Department of Physics; College of Sciences; N/AN/APublication Metadata only Comparative molecular dynamics simulations of amphotericin B-cholesterol/ergosterol membrane channels(Elsevier, 2002) Baginski, Maciej; Borowski, Edward; Department of Physics; Reşat, Haluk; Faculty Member; Department of Physics; College of Sciences; N/AAmphotericin B (AmB) is a very effective anti-fungal polyene macrolide antibiotic whose usage is limited by its toxicity. Lack of a complete understanding of AmB's molecular mechanism has impeded attempts to design less toxic AmB derivatives. The antibiotic is known to interact with sterols present in the cell membrane to form ion channels that disrupt membrane function. The slightly higher affinity of AmB toward ergosterol (dominant sterol in fungal cells) than cholesterol (mammalian sterol) is regarded as the most essential factor on which antifungal chemotherapy is based. To study these differences at the molecular level, two realistic model membrane channels containing molecules of AmB, sterol (cholesterol or ergosterol), phospholipid, and water were studied by molecular dynamics (MID) simulations. Comparative analysis of the simulation data revealed that the sterol type has noticeable effect on the properties of AmB membrane channels. In addition to having a larger size, the AmB channel in the ergosterol-containing membrane has a more pronounced pattern of intermolecular hydrogen bonds. The interaction between the antibiotic and ergosterol is more specific than between the antibiotic and cholesterol. These observed differences suggest that the channel in the ergosterol-containing membrane is more stable and, due to its larger size, would have a higher ion conductance. These observations are in agreement with experiments. (C) 2002 Elsevier Science B.V. All rights reserved.Publication Metadata only Conformational properties of amphotericin b amide derivatives - impact on selective toxicity(Springer, 2000) Sungur, F. Aylin; Baginski, Maciej; Borowski, Edward; Aviyente, Viktorya; Department of Physics; Reşat, Haluk; Faculty Member; Department of Physics; College of Sciences; N/AEven though it is highly toxic, Amphotericin B (AmB), an amphipathic polyene macrolide antibiotic, is used in the treatment of severe systemic fungal infections as a life-saving drug. To examine the influence of conformational factors on selective toxicity of these compounds, we have investigated the conformational properties of five AmB amide derivatives. It was found that the extended conformation with torsional angles (phi,psi)=(290 degrees,180 degrees ) is a common minimum of the potential energy surfaces (PES) of unsubstituted AmB and its amide derivatives. The extended conformation of the studied compounds allows for the formation of an intermolecular hydrogen bond network between adjacent antibiotic molecules in the open channel configuration. Therefore, the extended conformation is expected to be the dominant conformer in an open AmB (or its amide derivatives) membrane channel. The derivative compounds for calculations were chosen according to their selective toxicity compared to AmB and they had a wide range of selective toxicity. Except for two AmB derivatives, the PES maps of the derivatives reveal that the molecules can coexist in more than one conformer. Taking into account the cumulative conclusions drawn from the earlier MD simulation studies of AmB membrane channel, the results of the potential energy surface maps, and the physical considerations of the molecular structures, we hypothesize a new model of structure-selective toxicity of AmB derivatives. In this proposed model the presence of the extended conformation as the only well defined global conformer for AmB derivatives is taken as the indicator of their higher selective toxicity. This model successfully explains our results. To further test our model, we also investigated an AmB derivative whose selective toxicity has not been experimentally measured before. Our prediction for the selective toxicity of this compound can be tested in experiments to validate or invalidate the proposed model.Publication Metadata only Conformational properties of amphotericin B amide derivatives - impact on selective toxicity(Springer, 2000) Sungur, Fethiye Aylin; Beginski, Maciej; Borowski, Edward; Aviyente, Viktorya; Department of Physics; Reşat, Haluk; Faculty Member; Department of Physics; College of Sciences; N/AEven though it is highly toxic, Amphotericin B (AmB), an amphipathic polyene macrolide antibiotic, is used in the treatment of severe systemic fungal infections as a life-saving drug. To examine the influence of conformational factors on selective toxicity of these compounds, we have investigated the conformational properties of five AmB amide derivatives. It was found that the extended conformation with torsional angles (ΦΨ)=(290°, 180°) is a common minimum of the potential energy surfaces (PES) of unsubstituted AmB and its amide derivatives. The extended conformation of the studied compounds allows for the formation of an intermolecular hydrogen bond network between adjacent antibiotic molecules in the open channel configuration. Therefore, the extended conformation is expected to be the dominant conformer in an open AmB (or its amide derivatives) membrane channel. The derivative compounds for calculations were chosen according to their selective toxicity compared to AmB and they had a wide range of selective toxicity. Except for two AmB derivatives, the PES maps of the derivatives reveal that the molecules can coexist in more than one conformer. Taking into account the cumulative conclusions drawn from the earlier MD simulation studies of AmB membrane channel, the results of the potential energy surface maps, and the physical considerations of the molecular structures, we hypothesize a new model of structure-selective toxicity of AmB derivatives. In this proposed model the presence of the extended conformation as the only well defined global conformer for AmB derivatives is taken as the indicator of their higher selective toxicity. This model successfully explains our results. To further test our model, we also investigated an AmB derivative whose selective toxicity has not been experimentally measured before. Our prediction for the selective toxicity of this compound can be tested in experiments to validate or invalidate the proposed model.Publication Metadata only Effects of ligand binding upon flexibility of proteins(Wiley-Blackwell, 2015) Department of Chemical and Biological Engineering; Erman, Burak; Faculty Member; Department of Chemical and Biological Engineering; College of Engineering; 179997Binding of a ligand on a protein changes the flexibility of certain parts of the protein, which directly affects its function. These changes are not the same at each point, some parts become more flexible and some others become stiffer. Here, an equation is derived that gives the stiffness map for proteins. The model is based on correlations of fluctuations of pairs of points in proteins, which may be evaluated at different levels of refinement, ranging from all atom molecular dynamics to general elastic network models, including the simplest case of isotropic Gaussian Network Model. The latter is used, as an example, to evaluate the changes of stiffness upon dimerization of ACK1. Proteins 2015; 83:805-808. (c) 2015 Wiley Periodicals, Inc.