Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    PublicationOpen Access
    Hub location, routing, and route dimensioning: strategic and tactical intermodal transportation hub network design
    (The Institute for Operations Research and the Management Sciences (INFORMS), 2021) Yaman Hande; Karaşan Oya Ekin; Department of Industrial Engineering; Yıldız, Barış; Faculty Member; Department of Industrial Engineering; College of Engineering; 258791
    We propose a novel hub location model that jointly eliminates some of the traditional assumptions on the structure of the network and on the discount as a result of economies of scale in an effort to better reflect real-world logistics and transportation systems. Our model extends the hub literature in various facets: instead of connecting nonhub nodes directly to hub nodes, we consider routes with stopovers; instead of connecting pairs of hubs directly, we design routes that can visit several hub nodes; rather than dimensioning pairwise connections, we dimension routes of vehicles; and rather than working with a homogeneous fleet, we use intermodal transportation. Decisions pertinent to strategic and tactical hub location and transportation network design are concurrently made through the proposed optimization scheme. An effective branch-and-cut algorithm is developed to solve realistically sized problem instances and to provide managerial insights.
  • Thumbnail Image
    PublicationOpen Access
    Provably high-quality solutions for the meal delivery routing problem
    (The Institute for Operations Research and the Management Sciences (INFORMS), 2019) Savelsbergh, Martin; Department of Industrial Engineering; Yıldız, Barış; Faculty Member; Department of Industrial Engineering; College of Engineering; 258791
    Online restaurant aggregators with integrated meal delivery networks have become more common and more popular in the past few years. Meal delivery is arguably the ultimate challenge in last-mile logistics: a typical order is expected to be delivered within an hour (much less if possible) and within minutes of the food becoming ready. We introduce a novel formulation for a meal delivery routing problem (in which we assume perfect information about order arrivals) and develop a simultaneous column- and row-generation method for its solution. The analysis of the results of an extensive computational study, using instances derived from real-life data, demonstrates the efficacy of the solution approach, and provides valuable insights into, among others, the (potential) benefits of order bundling, courier-shift scheduling, and demand management.
  • Placeholder
    Publication
    Transshipment network design for express air cargo operations in China
    (Elsevier B.V., 2023) Savelsbergh, Martin; Dogru, Ali K.; Department of Industrial Engineering; Yıldız, Barış; Department of Industrial Engineering; College of Engineering
    We introduce a novel multimodal (ground and air transportation) network design model with transshipments for the transport of express cargo with heterogeneous service classes (i.e., next morning delivery, and next day delivery). We formulate this problem using a novel path-based mixed-integer program which seeks to maximize the demand (weight) served. We investigate the value of the proposed transshipment network under various operational conditions and by benchmarking against a direct shipment network and a network with a single transshipment point which mimics a classical star-shaped hub-and-spoke network. Our extensive computational study with real-world data from ShunFeng (SF) Express reveals that the integration of ground and air transportation improves the coverage and that transshipment enables serving a large number of origin–destination pairs with a small number of cargo planes. Importantly, we show that by simplifying handling, i.e., employing cross-docking rather than time-consuming sortation, a transshipment network can transport express cargo fast enough to meet demanding delivery deadlines. Finally, we find that increasing the efficiency of intra-city operations and extending the nightly operating time window are the most effective operational adjustments for further improving the performance of the proposed transshipment network.