Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 10 of 111
  • Thumbnail Image
    PublicationOpen Access
    A characterization of the extended serial correspondence
    (Elsevier, 2015) Heo, Eun Jeong; Department of Economics; Yılmaz, Özgür; Faculty Member; Department of Economics; College of Administrative Sciences and Economics; 108638
    We study the problem of assigning objects to a group of agents. We focus on probabilistic methods that take agents' ordinal preferences over the objects. Importantly, we allow for indifferences among objects. Katta and Sethuraman (2006) propose the extended serial correspondence to solve this problem. Our main result is a characterization of the extended serial correspondence in welfare terms by means of stochastic dominance efficiency, stochastic dominance no-envy and "limited invariance," a requirement we adapt from Heo (2014a). We also prove that an assignment matrix is selected by the extended serial correspondence if and only if it satisfies "non-wastefulness" and "ordinal fairness," which we adapt from Kesten et al.
  • Thumbnail Image
    PublicationOpen Access
    A comparative study on GaSb epilayers grown on nominal and vicinal Si(100) substrates by molecular beam epitaxy
    (Institute of Physics (IOP) Publishing, 2020) Arpapay, Burcu; Suyolcu, Y. Eren; van Aken, Peter A.; Gülgün, Mehmet Ali; Serincan, Uğur; Çorapçıoğlu, Gülcan; n2STAR-Koç University Nanofabrication and Nanocharacterization Center for Scientifc and Technological Advanced Research
    The direct growth of GaSb buffer layers on Si substrates is attracting considerable interest in the integration of group III-Sb based device structures on lower-cost Si substrates. Here, we present the effect of various growth steps on the defect types and defect density that are crucial for advancing high crystal quality GaSb buffer layer on nominal/vicinal Si substrate. As a growth step, the applied thermal annealing at an intermediate step provided a decrease in the threading dislocation (TD) density down to 1.72 x 10(8) cm(-2), indicating a more effective method compared to post-growth annealing. Additionally, the importance of period number and position of GaSb/AlSb superlattice layers inserted in GaSb epilayers is demonstrated. In the case of the GaSb epilayers grown on vicinal substrates, the APB density as low as 0.06 mu m(-1) and TD density of 1.98 x 10(8) cm(-2) were obtained for the sample grown on 4 degrees miscut Si(100) substrate.
  • Thumbnail Image
    PublicationOpen Access
    A note on a strongly damped wave equation with fast growing nonlinearities
    (American Institute of Physics (AIP) Publishing, 2015) Zelik, Sergey; Department of Mathematics; Kalantarov, Varga; Faculty Member; Department of Mathematics; College of Sciences; 117655
    A strongly damped wave equation including the displacement depending nonlinear damping term and nonlinear interaction function is considered. The main aim of the note is to show that under the standard dissipativity restrictions on the nonlinearities involved, the initial boundary value problem for the considered equation is globally well-posed in the class of sufficiently regular solutions and the semigroup generated by the problem possesses a global attractor in the corresponding phase space. These results are obtained for the nonlinearities of an arbitrary polynomial growth and without the assumption that the considered problem has a global Lyapunov function. (C) 2015 AIP Publishing LLC
  • Thumbnail Image
    PublicationOpen Access
    A novel haptic feature set for the classification of interactive motor behaviors in collaborative object transfer
    (Institute of Electrical and Electronics Engineers (IEEE), 2021) Küçükyılmaz, Ayşe; Department of Mechanical Engineering; Başdoğan, Çağatay; Şirintuna, Doğanay; Al-Saadi, Zaid Rassim Mohammed; Faculty Member; Department of Mechanical Engineering; College of Engineering; Graduate School of Sciences and Engineering; 125489; N/A; N/A
    Haptics provides a natural and intuitive channel of communication during the interaction of two humans in complex physical tasks, such as joint object transportation. However, despite the utmost importance of touch in physical interactions, the use of haptics is under-represented when developing intelligent systems. This article explores the prominence of haptic data to extract information about underlying interaction patterns within physical human-human interaction (pHHI). We work on a joint object transportation scenario involving two human partners, and show that haptic features, based on force/torque information, suffice to identify human interactive behavior patterns. We categorize the interaction into four discrete behavior classes. These classes describe whether the partners work in harmony or face conflicts while jointly transporting an object through translational or rotational movements. In an experimental study, we collect data from 12 human dyads and verify the salience of haptic features by achieving a correct classification rate over 91% using a Random Forest classifier.
  • Thumbnail Image
    PublicationOpen Access
    A physical channel model and analysis for nanoscale molecular communications with Förster resonance energy transfer (FRET)
    (Institute of Electrical and Electronics Engineers (IEEE), 2012) Kuşcu, Murat; Akan, Özgür Barış; Faculty Member; College of Engineering
    In this study, a novel and physically realizable nanoscale communication paradigm is introduced based on a well-known phenomenon, Forster resonance energy transfer (FRET), for the first time in the literature. FRET is a nonradiative energy transfer process between fluorescent molecules based on the dipole-dipole interactions of molecules. Energy is transferred rapidly from a donor to an acceptor molecule in a close proximity such as 0 to 10 nm without radiation of a photon. Low dependence on the environmental factors, controllability of its parameters, and relatively wide transfer range make FRET a promising candidate to be used for a high-rate nanoscale communication channel. In this paper, the simplest form of the FRET-based molecular communication channel comprising a single transmitter-receiver nanomachine pair and an extended version of this channel with a relay nanomachine for long-range applications are modeled considering nanomachines as nanoscale electromechanical devices with some sensing, computing, and actuating capabilities. Furthermore, using the information theoretical approach, the capacities of these communication channels are investigated and the dependence of the capacity on some environmental and intrinsic parameters is analyzed. It is shown that the capacity can be increased by appropriately selecting the donor-acceptor pair, the medium, the intermolecular distance, and the orientation of the molecules.
  • Placeholder
    Publication
    A review of active vibration and noise suppression of plate-like structures with piezoelectric transducers
    (Sage Publications Ltd, 2015) N/A; Department of Mechanical Engineering; Arıdoğan, Mustafa Uğur; Başdoğan, İpek; PhD Student; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 179940
    Structural vibrations are the major causes of noise problems, passenger discomforts, and mechanical failures in aerospace, Automotive, and marine systems, which are mainly composed of lightweight and flexible plate-like structures. in order to reduce structural vibrations and noise radiations of lightweight structures, passive and active treatments have been used and investigated over the last three decades. Our aim of this article is to review current state-of-the-art of active vibration and noise suppression systems for plate and plate-like structures with various kinds of boundary conditions. the reviewed articles use numerical methods and experimental tools to study different aspects of controller architectures. in particular, the focus is placed on the active vibration and noise control systems utilizing piezoelectric patches as sensors and actuators since their popularity in vibration-based applications has increased significantly during the last two decades. We first classify the controllers according to their architectures, then compare their performance in vibration and noise attenuation, and finally provide suggestions for further progress. the categorization of the information regarding the controller strategies and sensor/actuator configurations for different host structures can be used by the controller designers as a starting point for their specific configuration.
  • Thumbnail Image
    PublicationOpen Access
    Activation of the pleiotropic drug resistance pathway can promote mitochondrial DNA retention by fusion-defective mitochondria in saccharomyces cerevisiae
    (Genetics Society America (GSA), 2014) Department of Chemical and Biological Engineering; Dunn, Cory David; Mutlu, Nebibe; Garipler, Görkem; Akdoğan, Emel; Faculty Member; Department of Chemical and Biological Engineering; College of Sciences
    Genetic and microscopic approaches using Saccharomyces cerevisiae have identified many proteins that play a role in mitochondrial dynamics, but it is possible that other proteins and pathways that play a role in mitochondrial division and fusion remain to be discovered. Mutants lacking mitochondrial fusion are characterized by rapid loss of mitochondrial DNA. We took advantage of a petite-negative mutant that is unable to survive mitochondrial DNA loss to select for mutations that allow cells with fusion-deficient mitochondria to maintain the mitochondrial genome on fermentable medium. Nextgeneration sequencing revealed that all identified suppressor mutations not associated with known mitochondrial division components were localized to PDR1 or PDR3, which encode transcription factors promoting drug resistance. Further studies revealed that at least one, if not all, of these suppressor mutations dominantly increases resistance to known substrates of the pleiotropic drug resistance pathway. Interestingly, hyperactivation of this pathway did not significantly affect mitochondrial shape, suggesting that mitochondrial division was not greatly affected. Our results reveal an intriguing genetic connection between pleiotropic drug resistance and mitochondrial dynamics.
  • Thumbnail Image
    PublicationOpen Access
    An information theoretical analysis of nanoscale molecular gap junction communication channel between cardiomyocytes
    (Institute of Electrical and Electronics Engineers (IEEE), 2013) Kılınç, Deniz; Akan, Özgür Barış; College of Engineering
    Molecular communication (MC) is a promising paradigm to communicate at nanoscale and it is inspired by nature. One of the MC methods in nature is the gap junction (GJ) communication between cardiomyocytes. The GJ communication is achieved by diffusion of ions through GJ channels between the cells. The transmission of the information is realized by means of the propagation of the action potential (AP) signal. The probabilities of both the AP propagation failure and the spontaneous AP initiation are obtained. For the first time in the literature, the GJ communication channel is modeled and analyzed from the information theoretical perspective to find the communication channel capacity. A closed-form expression is derived for the capacity of the GJ communication channel. The channel capacity, propagation delay, and information transmission rate are analyzed numerically for a three-cell network. The results of the numerical analyses point out a correlation between an increase in the incidence of several cardiac diseases and a decrease in the channel capacity, an increase in the propagation delay, and either an increase or a decrease in the transmission rate. The method that we use and results that are presented may help in the investigation, diagnosis, and treatment of cardiac diseases as well as help in the design of nanodevices communicating via GJ channels.
  • Thumbnail Image
    PublicationOpen Access
    An integrated analysis of capacity allocation and patient scheduling in presence of seasonal walk-ins
    (Springer, 2018) Çayırlı, Tuğba; Dursun, Pınar; Department of Business Administration; Güneş, Evrim Didem; Faculty Member; Department of Business Administration; College of Administrative Sciences and Economics; 51391
    This study analyzes two decision levels in appointment system design in the context of clinics that face seasonal demand for scheduled and walk-in patients. The macro-level problem addresses access rules dealing with capacity allocation decisions in terms of how many slots to reserve for walk-ins and scheduled patients given fixed daily capacity for the clinic session. The micro-level problem addresses scheduling rules determining the specific time slots for scheduled arrivals. A fully-integrated simulation model is developed where daily demand actualized at the macro level becomes an input to the micro model that simulates the in-clinic dynamics, such as the arrivals of walk-ins and scheduled patients, as well as stochastic service times. The proposed integrated approach is shown to improve decision-making by considering patient lead times (i.e., indirect wait), direct wait times, and clinic overtime as relevant measures of performance. The traditional methods for evaluating appointment system performance are extended to incorporate multiple trade-offs. This allows combining both direct wait and indirect wait that are generally addressed separately due to time scale differences (minutes vs. days). The results confirm the benefits of addressing both decision levels in appointment system design simultaneously. We investigate how environmental factors affect the performance and the choice of appointment systems. The most critical environmental factors emerge as the demand load, seasonality level, and percentage of walk-ins, listed in the decreasing order of importance.
  • Placeholder
    Publication
    An investigation of new graph invariants related to the domination number of random proximity catch digraphs
    (Springer, 2012) Department of Mathematics; Ceyhan, Elvan; Faculty Member; Department of Mathematics; College of Sciences; N/A
    Proximity catch digraphs (PCDs) are a special type of proximity graphs based on proximity maps which yield proximity regions. PCDs are defined using the relative allocation of points from two or more classes in a region of interest and have applications in various fields. We introduce some auxiliary tools for PCDs and graph invariants related to the domination number of the PCDs and investigate their probabilistic properties. We consider the cases in which the vertices of the PCDs come from uniform and non-uniform distributions in the region of interest. We also provide some of the newly defined proximity maps as illustrative examples.