Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 10 of 16
  • Placeholder
    Publication
    A computational biomechanical investigation of posterior dynamic instrumentation: combination of dynamic rod and hinged (dynamic) screw
    (Asme, 2014) Kiapour, Ali; Goel, Vijay K.; N/A; N/A; Erbulut, Deniz Ufuk; Öktenoğlu, Bekir Tunç; Özer, Ali Fahir; Researcher; Faculty Member; School of Medicine, College of Engineering; School of Medicine; 37661; 220898; 1022
    Currently, rigid fixation systems are the gold standard for degenerative disk disease treatment. Dynamic fixation systems have been proposed as alternatives for the treatment of a variety of spinal disorders. These systems address the main drawbacks of traditional rigid fixation systems, such as adjacent segment degeneration and instrumentation failure. Pedicle-screw-based dynamic stabilization (PDS) is one type of these alternative systems. The aim of this study was to simulate the biomechanical effect of a novel posterior dynamic stabilization system, which is comprised of dynamic (hinged) screws interconnected with a coiled, spring-based dynamic rod (DSDR), and compare it to semirigid (DSRR and RSRR) and rigid stabilization (RSRR) systems. A validated finite element (FE) model of L1-S1 was used to quantify the biomechanical parameters of the spine, such as range of motion, intradiskal pressure, stresses and facet loads after single-level instrumentation with different posterior stabilization systems. The results obtained from in vitro experimental intact and instrumented spines were used to validate the FE model, and the validated model was then used to compare the biomechanical effects of different fixation and stabilization constructs with intact under a hybrid loading protocol. The segmental motion at L4-L5 increased by 9.5% and 16.3% in flexion and left rotation, respectively, in DSDR with respect to the intact spine, whereas it was reduced by 6.4% and 10.9% in extension and left-bending loads, respectively. After instrumentation-induced intradiskal pressure at adjacent segments, L3-L4 and L5-S1 became less than the intact in dynamic rod constructs (DSDR and RSDR) except in the RSDR model in extension where the motion was higher than intact by 9.7% at L3-L4 and 11.3% at L5-S1. The facet loads were insignificant, not exceeding 12N in any of the instrumented cases in flexion. In extension, the facet load in DSDR case was similar to that in intact spine. The dynamic rod constructions (DSDR and RSDR) led to a lesser peak stress at screws compared with rigid rod constructions (DSRR and RSRR) in all loading cases. A dynamic construct consisting of a dynamic rod and a dynamic screw did protect the adjacent level from excessive motion.
  • Placeholder
    Publication
    A novel microfluidics-based point of care technique for viscoelastic hemostatic assay
    (IOS Press, 2021) Erten, Ahmet Can; Yalçın, Özlem; Torun, Berfin Irmak; Öz, Fatma; Faculty Member; Master Student; Master Student; School of Medicine; Graduate School of Sciences and Engineering; raduate School of Sciences and Engineering; 218440; N/A; N/A
    N/A
  • Placeholder
    Publication
    A structured mechanical risk sensitivity assessment system using red cell deformability and fragmentation parameters
    (Ios Press, 2021) Yalçın, Özlem; Uğurel, Elif; Göktaş, Polat; Göksel, Evrim; Çilek, Neslihan; Atar, Dila; Faculty Member; Researcher; Researcher; PhD Student; PhD Student; Undergraduate Student; School of Medicine; School of Medicine; School of Medicine; Graduate School of Health Sciences; Graduate School of Health Sciences; School of Medicine; 218440; N/A; N/A; N/A; N/A; N/A
    N/A 
  • Placeholder
    Publication
    A variable elastance-based mock circulation model for replicating human cardiovascular system
    (Wichtig Editore, 2011) Küçükaksu, S.; Şahin, Tuğcan; Department of Mechanical Engineering; Lazoğlu, İsmail; Faculty Member; Department of Mechanical Engineering; College of Engineering; 179391
    N/A
  • Placeholder
    Publication
    Biomechanical comparison of transdiscal fixation and posterior fixation with and without transforaminal lumbar interbody fusion in the treatment of l5-s1 lumbosacral joint
    (Sage Publications Ltd, 2018) Ozalp, Hakan; Ozkaya, Mustafa; Demir, Teyfik; N/A; Yaman, Onur; Doctor; N/A; Koç University Hospital; 219524
    Transdiscal screw fixation is generally performed in the treatment of high-grade L5-S1 spondylolisthesis. The main thought of the study is that the biomechanical performances of the transdiscal pedicle screw fixation can be identical to standard posterior pedicle screw fixations with or without transforaminal lumbar interbody fusion cage insertion. Lumbosacral portions and pelvises of 45 healthy lambs' vertebrae were dissected. Animal cadavers were randomly and equally divided into three groups for instrumentation. Three fixation systems, L5-S1 posterior pedicle screw fixation, L5-S1 posterior pedicle screw fixation with transforaminal lumbar interbody fusion cage insertion, and L5-S1 transdiscal pedicle screw fixation, were generated. Axial compression, flexion, and torsion tests were conducted on test samples of each system. In axial compression, L5-S1 transdiscal fixation was less stiff than L5-S1 posterior pedicle screw fixation with transforaminal lumbar interbody fusion cage insertion. There were no significant differences between groups in flexion. Furthermore, L5-S1 posterior fixation was stiffest under torsional loads. When axial compression and flexion loads are taken into consideration, transdiscal fixation can be alternatively used instead of posterior pedicle screw fixation in the treatment of L5-S1 spondylolisthesis because it satisfies enough stability. However, in torsion, posterior fixation is shown as a better option due to its higher stiffness.
  • Placeholder
    Publication
    CMR may predict VT in ICM. how about in better hearts, does it really work?
    (Wiley, 2015) Yalın, Kıvanç; Aksu, Tolga; Gölcük, Şükriye Ebru; Doctor; School of Medicine; Koç University Hospital; N/A
    N/A
  • Placeholder
    Publication
    Development of a novel shrouded impeller pediatric blood pump
    (Springer Japan Kk, 2018) N/A; N/A; N/A; Department of Mechanical Engineering; N/A; Khan, Talha Irfan; Zad, Haris Sheh; Lazoğlu, İsmail; Yalçın, Özlem; PhD Student; PhD Student; Faculty Member; Faculty Member; Department of Mechanical Engineering; Manufacturing and Automation Research Center (MARC); Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; School of Medicine; N/A; N/A; 179391; 218440
    The aim of this work was to analyze a shrouded impeller pediatric ventricular assist device (SIP-VAD). This device has distinctive design characteristics and parameter optimizations for minimization of recirculation flow and reduction in high-stress regions that cause blood damage. Computational Fluid Dynamics (CFD) simulations were performed to analyze the optimized design. The bench-top prototype of SIP-VAD was manufactured with biocompatible stainless steel. A study on the hydrodynamic and hemodynamic performance of the SIP-VAD was conducted with predictions from CFD and actual experimentation values, and these results were compared. The CFD analysis yielded a pressure range of 29-90 mmHg corresponding to flow rates of 0.5-3 L/min over 9000-11000 rpm. The predicted value of the normalized index of hemolysis (NIH) was 0.0048 g/100 L. The experimental results with the bench-top prototype showed a pressure rise of 30-105 mmHg for the flow speed of 8000-12000 rpm and flow rate of 0.5-3.5 L/min. The maximum difference between CFD and experimental results was 4 mmHg pressure. In addition, the blood test showed the average NIH level of 0.00674 g/100 L. The results show the feasibility of shrouded impeller design of axial-flow pump for manufacturing the prototype for further animal trials.
  • Placeholder
    Publication
    Do we need a transforaminal lumbar interbody fusion cage to increase the stability of functional spinal unit when comparing unilateral and bilateral fixation?
    (Sage Publications Ltd, 2018) Ulutas, Murat; Ozkaya, Mustafa; Demir, Teyfik; N/A; Yaman, Onur; Doctor; N/A; Koç University Hospital; 219524
    Transforaminal lumbar interbody fusion was an alternative to posterior lumbar interbody fusion for decompression surgeries. This study investigates the biomechanical responses of the unilateral and bilateral pedicle screw fixations with/without transforaminal lumbar interbody fusion cages under axial compression, flexion, and torsional loads. Ovine vertebrae were used in this study. Cadavers, randomly divided into five, were intact control group, bilateral pedicle screw fixation group, bilateral pedicle screw fixation group with transforaminal lumbar interbody fusion cage, unilateral pedicle screw fixation group, and unilateral pedicle screw fixation group with transforaminal lumbar interbody fusion cage. Axial compression, flexion, and torsion tests were performed on specimens. All study groups provided higher stiffness and yield load values than control group under axial compression. Addition of transforaminal lumbar interbody fusion cage to bilateral fixation increased the stiffness under axial compression. Moreover, additional use of transforaminal lumbar interbody fusion in unilateral fixation increased the yield load values under axial compression. Control group was the stiffest in flexion test. Placing a transforaminal lumbar interbody fusion cage to both unilateral and bilateral fixations did not significantly change the stiffness values. Additional transforaminal lumbar interbody fusion cage increased the yield moment of the bilateral fixation. In torsion test, control group had the highest stiffness and yield torque. The facet joints are the most important parts of the vertebrae on the stability. When comparing the bilateral and unilateral fixations with transforaminal lumbar interbody fusion addition, the more facet preserving approach has significantly higher stability under axial compression, flexion, and torsion. Unilateral fixation with transforaminal lumbar interbody fusion cage can be said biomechanically stable and advantageous fixation system because of the advantage on the less facet and soft tissue resection compared to bilateral fixation with transforaminal lumbar interbody fusion.
  • Placeholder
    Publication
    Effect of preservation period on the viscoelastic material properties of soft tissues with implications for liver transplantation
    (Asme, 2010) N/A; N/A; N/A; Department of Mechanical Engineering; Department of Mechanical Engineering; Öcal, Sina; Özcan, Mustafa Umut; Başdoğan, İpek; Başdoğan, Çağatay; Master Student; Master Student; Faculty Member; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; N/A; N/A; 179940; 125489
    The liver harvested from a donor must be preserved and transported to a suitable recipient immediately for a successful liver transplantation. In this process, the preservation period is the most critical, since it is the longest and most tissue damage occurs during this period due to the reduced blood supply to the harvested liver and the change in its temperature. We investigate the effect of preservation period on the dynamic material properties of bovine liver using a viscoelastic model derived from both impact and ramp and hold experiments. First, we measure the storage and loss moduli of bovine liver as a function of excitation frequency using an impact hammer. Second, its time-dependent relaxation modulus is measured separately through ramp and hold experiments performed by a compression device. Third, a Maxwell solid model that successfully imitates the frequency- and time-dependent dynamic responses of bovine liver is developed to estimate the optimum viscoelastic material coefficients by minimizing the error between the experimental data and the corresponding values generated by the model. Finally, the variation in the viscoelastic material coefficients of bovine liver are investigated as a function of preservation period for the liver samples tested 1 h, 2 h, 4 h, 8 h, 12 h, 24 h, 36 h, and 48 h after harvesting. The results of our experiments performed with three animals show that the liver tissue becomes stiffer and more viscous as it spends more time in the preservation cycle.
  • Placeholder
    Publication
    Effect of solution and post-mortem time on mechanical and histological properties of liver during cold preservation
    (IOS Press, 2014) N/A; N/A; Department of Mechanical Engineering; Ayyıldız, Mehmet; Aktaş, Ranan Gülhan; Başdoğan, Çağatay; PhD Student; Faculty Member; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineeringg; School of Medicine; College of Engineering; N/A; 137519; 125489
    Background: In liver transplantation, the donor and recipient are in different locations most of the time, and longer preservation periods are inevitable. Hence, the choice of the preservation solution and the duration of the preservation period are critical for the success of the transplant surgery. Objective: In this study, we examine the mechanical and histological properties of the bovine liver tissue stored in Lactated Ringer's (control), HTK and UW solutions as a function of preservation period. Methods: The mechanical experiments are conducted with a shear rheometer on cylindrical tissue samples extracted from 3 bovine livers and the change in viscoelastic material properties of the bovine liver is characterized using the fractional derivative Kelvin-Voigt Model. Also, the histological examinations are performed on the same liver samples under a light microscope. Results: The results show that the preservation solution and period have a significant effect on the mechanical and histological properties of the liver tissue. The storage and loss shear moduli, the number of the apoptotic cells, the collagen accumulation, and the sinusoidal dilatation increase, and the glycogen deposition decreases as the preservation period is longer. Conclusions: Based on the statistical analyses, we observe that the liver tissue is preserved well in all three solutions for up to 11 h. After then, UW solution provides a better preservation up to 29 h. However, for preservation periods longer than 29 h, HTK is a more effective preservation solution based on the least amount of change in mechanical properties. on the other hand, the highest correlation between the mechanical and histological properties is observed for the liver samples preserved in UW solution.