Research Outputs
Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2
Browse
4 results
Search Results
Publication Metadata only A LES/PDF simulator on block-structured meshes(Taylor & Francis Ltd, 2019) Pope, Stephen B.; N/A; Department of Mechanical Engineering; Department of Mechanical Engineering; Türkeri, Hasret; Muradoğlu, Metin; PhD Student; Faculty Member; Graduate School of Sciences and Engineering; College of Engineering; N/A; 46561A block-structured mesh large-eddy simulation (LES)/probability density function (PDF) simulator is developed within the OpenFOAM framework for computational modelling of complex turbulent reacting flows. The LES/PDF solver is a hybrid solution methodology consisting of (i) a finite-volume (FV) method for solving the filtered mass and momentum equations (LES solver), and (ii) a Lagrangian particle-based Monte Carlo algorithm (PDF solver) for solving the modelled transport equation of the filtered joint PDF of compositions. Both the LES and the PDF methods are developed and combined to form a hybrid LES/PDF simulator entirely within the OpenFOAM framework. The in situ adaptive tabulation method [S.B. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, Combust. Theory Model. 1 (1997), pp. 41-63; L. Lu, S.R. Lantz, Z. Ren, and B.S. Pope, Computationally efficient implementation of combustion chemistry in parallel PDF calculations, J. Comput. Phys. 228 (2009), pp. 5490-5525] is incorporated into the new LES/PDF solver for efficient computations of combustion chemistry with detailed reaction kinetics. The method is designed to utilise a block-structured mesh and can readily be extended to unstructured grids. The three-stage velocity interpolation method of Zhang and Haworth [A general mass consistency algorithm for hybrid particle/finite-volume PDF methods, J. Comput. Phys. 194 (2004), pp. 156-193] is adapted to interpolate the LES velocity field onto particle locations accurately and to enforce the consistency between LES and PDF fields at the numerical solution level. The hybrid algorithm is fully parallelised using the conventional domain decomposition approach. A detailed examination of the effects of each stage and the overall performance of the velocity interpolation algorithm is performed. Accurate coupling of the LES and PDF solvers is demonstrated using the one-way coupling methodology. Then the fully two-way coupled LES/PDF solver is successfully applied to simulate the Sandia Flame-D, and a turbulent non-swirling premixed flame and a turbulent swirling stratified flame from the Cambridge turbulent stratified flame series [M.S. Sweeney, S. Hochgreb, M.J. Dunn, and R.S. Barlow, The structure of turbulent stratified and premixed methane/air flames I: Non-swirling flows, Combust. Flame 159 (2012), pp. 2896-2911; M.S. Sweeney, S. Hochgreb, M.J. Dunn, and R.S. Barlow, The structure of turbulent stratified and premixed methane/air flames II: Swirling flows, Combust. Flame 159 (2012), pp. 2912-2929]. It is found that the LES/PDF method is very robust and the results are in good agreement with the experimental data for both flames.Publication Metadata only Competitive hydrogen bonding in aspirin-aspirin and aspirin-leucine interactions(Scientific Technical Research Council Turkey-Tubitak, 2012) Department of Chemistry; Department of Chemical and Biological Engineering; Department of Chemistry; Department of Chemical and Biological Engineering; Department of Chemistry; Yurtsever, Zeynep; Erman, Burak; Yurtsever, İsmail Ersin; Undergraduate Student; Faculty Member; Faculty Member; College of Sciences; College of Engineering; College of Sciences; N/A; 179997; 7129Aspirin-aspirin and aspirin-leucine interactions are studied by the density functional theory (DFT) and high level ab initio calculations with second order Moller-Plesset perturbation theory (MP2). The rotational isomers of aspirin are identified by their relative stability both in gaseous phase and in water using the polarizable continuum method (PCM). Local minima of aspirin monomers in water are found to be all highly populated compared to the gas phase behavior. Homodimers of aspirin form hydrogen bonds with bond energies of 10 kcal/mol. Weak hydrogen bonds utilizing phenyl and methyl groups are also found. The interaction between aspirin and leucine is stronger with relatively short bond lengths compared to homodimeric aspirin interactions. The potential energy surface has several minima with comparable stability. This study shows the significance of diverse bonding schemes, which are important for understanding complete interaction mechanisms of aspirin.Publication Metadata only Inferring transferable intermolecular potential models(2008) Üçyigitler, Sinan; Çamurdan, Mehmet C.; Elliott, J. Richard; Department of Industrial Engineering; Department of Industrial Engineering; Türkay, Metin; Faculty Member; College of Engineering; 24956Discontinuous molecular dynamics is combined with thermodynamic perturbation theory to provide an efficient basis for characterising molecular interactions based on vapour pressure and liquid density data. Several prospective potential models are discretised to permit treatment by Barker–Henderson perturbation theory. The potentials are characterised by 11 wells ranging over radial distances from the site diameter to three times that diameter. Considered potential models include the Lennard-Jones (LJ), square-well, Yukawa (Yuk) and multi-line potentials, and their combinations. The optimal model is found to be a combination of square-well and Yuk potentials, with the switch position and Yuk decay set to universal values. This model provides average vapour pressure deviations of less than 10% for a database of 86 aliphatic, aromatic and naphthenic compounds. The LJ potential provides the least competitive accuracy. Considering statistical information criteria facilitates the identification of the optimal model.Publication Open Access Investigation of performances of commercial diesel oxidation catalysts for CO, C3H6, and NO oxidation(TÜBİTAK, 2021) Yıldız, Deniz Şanlı; Özener, Hüseyin Barkın; Hisar, Gökhan; Department of Chemical and Biological Engineering; Department of Chemical and Biological Engineering; Güneş, Hande; Bozbağ, Selmi Erim; Erkey, Can; Researcher; Faculty Member; College of Engineering; N/A; N/A; 29633Four commercial monolithic diesel oxidation catalysts (DOCs) with two different platinum group metal (PGM) loadings and Pt:Pd ratios of 1:0, 2:1, 3:1 (w/w) were investigated systematically for CO, C3H6, and NO oxidation, CO-C3H6 co-oxidation, and CO-C3H6-NO oxidation reactions via transient activity measurements in a simulated diesel engine exhaust environment. As PGM loading increased, light-off curves shifted to lower temperatures for individual and co-oxidation reactions of CO and C3H6. CO and C3H6 were observed to inhibit the oxidation of themselves and each other. Addition of Pd to Pt was found to enhance CO and C3H6 oxidation performance of the catalysts while the presence and amount of Pd was found to increase the extent of self-inhibition of NO oxidation. NO inhibited CO and C3H6 oxidation reactions while NO oxidation performance was enhanced in the presence of CO and C3H6 probably due to the occurrence of reduced Pt and Pd sites during CO and C3H6 oxidations. The optimum Pt:Pd ratio for individual and co-oxidations of CO, C3H6, and NO was found to be Pt:Pd = 3:1 (w/w) in the range of experimental conditions investigated in this study.