Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 10 of 11
  • Thumbnail Image
    PublicationOpen Access
    3D engineered neural co-culture model and neurovascular effects of marine fungi-derived citreohybridonol
    (American Institute of Physics (AIP) Publishing, 2022) Polat, İrem; Özkaya, Ferhat Can; El-Neketi, Mona; Ebrahim, Weaam; Şengül, Gülgün; Department of Mechanical Engineering; Sokullu, Emel; Sarabi, Misagh Rezapour; Taşoğlu, Savaş; Faculty Member; Faculty Member; Department of Mechanical Engineering; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Koç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI); KU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR); School of Medicine; Graduate School of Sciences and Engineering; College of Engineering; 163024; N/A; 291971
    Marine-based biomolecules are emerging metabolites that have gained attention for developing novel biomaterials, drugs, and pharmaceutical in vitro platforms. Here, we developed a 3D engineered neural co-culture model via a 3D prototyped sliding frame-platform for multi-step UV lithography and investigated the neurovascular potential of citreohybridonol in neuroblastoma treatment. Citreohybridonol was isolated from a sponge-derived fungus Penicillium atrovenetum. The model was characterized by Fourier-transform infrared spectroscopy and scanning electron microscopy analysis. Human umbilical cord vein endothelial cells (HUVECs) and neuroblastoma (SH-SY5Y) cell lines were encapsulated in gelatin methacrylate (GelMA) with and without citreohybridonol. The effect of citreohybridonol on the proliferation capacity of cells was assessed via cell viability and immunostaining assays. GelMA and 3D culture characterization indicated that the cells were successfully encapsulated as axenic and mixed with/without citreohybridonol. The cytotoxic test confirmed that the 3D microenvironment was non-toxic for cultural experiments, and it showed the inhibitory effects of citreohybridonol on SH-SY5Y cells and induced the proliferation of HUVECs. Finally, immunohistochemical staining demonstrated that citreohybridonol suppressed SH-SY5Y cells and induced vascularization of HUVECs in mixed 3D cell culture.
  • Placeholder
    Publication
    A microstructure-sensitive model for simulating the impact response of a high-manganese austenitic steel
    (Asme, 2016) N/A; N/A; Department of Mechanical Engineering; Mirzajanzadeh, Morad; Canadinç, Demircan; PhD Student; Faculty Member; Department of Mechanical Engineering; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; College of Engineering; N/A; 23433
    Microstructurally informed macroscopic impact response of a high-manganese austenitic steel was modeled through incorporation of the viscoplastic self-consistent (VPSC) crystal plasticity model into the ANSYS LS-DYNA nonlinear explicit finite-element (FE) frame. Voce hardening flow rule, capable of modeling plastic anisotropy in microstructures, was utilized in the VPSC crystal plasticity model to predict the micromechanical response of the material, which was calibrated based on experimentally measured quasi-static uniaxial tensile deformation response and initially measured textures. Specifically, hiring calibrated Voce parameters in VPSC, a modified material response was predicted employing local velocity gradient tensors obtained from the initial FE analyses as a new boundary condition for loading state. The updated micromechanical response of the material was then integrated into the macroscale material model by calibrating the Johnson-Cook (JC) constitutive relationship and the corresponding damage parameters. Consequently, we demonstrate the role of geometrically necessary multi-axial stress state for proper modeling of the impact response of polycrystalline metals and validate the presented approach by experimentally and numerically analyzing the deformation response of the Hadfield steel (HS) under impact loading.
  • Thumbnail Image
    PublicationOpen Access
    Deagglomeration of nanoparticle clusters in a "cavitation on chip" device
    (American Institute of Physics (AIP) Publishing, 2020) Gevari, M.T.; Niazi, S.; Şendur, K.; Mengüç, M. P.; Ghorbani, M.; Koşar, A.; Department of Mechanical Engineering; Karimzadehkhouei, Mehrdad; Researcher; Department of Mechanical Engineering; Graduate School of Sciences and Engineering
    Due to the potential of significant energy release in cavitating flows, early cavitation inception and intensification of cavitating flows are of great importance. To use this potential, we investigated the deagglomeration of nanoparticle clusters with the implementation of hydrodynamic cavitation in a microfluidic device. For this purpose, a microfluidic device with a micro-orifice geometry was designed and fabricated using standard microfabrication processes. The system was tested with distilled water in the assembled experimental setup. The flow patterns were characterized using the cavitation number and inlet pressure. Titania nanoparticles were utilized to prepare nanoparticle suspensions. The suspensions were heated to allow agglomeration of nanoparticles. The system was operated with the new working fluid (nanoparticle clusters) at different inlet pressures. After characterizing flow patterns, the flow patterns were compared with those of pure water. The deagglomeration effects of hydrodynamic cavitation on nanoparticle clusters showed the possibility to apply this method for the stabilization of nanoparticles, which paves way to the implementation of nanoparticle suspensions to thermal fluid systems for increased energy efficiency as well as to drug delivery. Our results also indicate that the presence of nanoparticles in the working fluid enhanced cavitation intensity due to the increase in the number of heterogeneous nucleation sites.
  • Thumbnail Image
    PublicationOpen Access
    Estimation of pulsatile energy dissipation in intersecting pipe junctions using inflow pulsatility indices
    (American Institute of Physics (AIP) Publishing, 2021) Dur, Onur; Department of Mechanical Engineering; Pekkan, Kerem; Rasooli, Reza; Faculty Member; Researcher; Department of Mechanical Engineering; Graduate School of Health Sciences; College of Engineering; 161845; N/A
    This study aims to characterize the effect of inflow pulsatility on the hydrodynamic power loss inside intersecting double-inlet, double-outlet pipe intersection (DIPI) with cross-flow mixing. An extensive set of computational fluid dynamics (CFD) simulations was performed in order to identify the individual effects of flow pulsatility parameters, i.e., amplitude, frequency, and relative phase shift between the inflow waveform oscillations, on power loss. An experimentally validated second order accurate solver is employed in this study. To predict the pulsatile flow performance of any given arbitrary inflow waveforms, we proposed three easy-to-calculate pulsatility indices. The frequency-coupled quasi-steady flow theory is incorporated to identify the functional form of pulsatile power loss as a function of these indices. Our results indicated that the power loss within the inflow branch sections, lumped outflow-junction section, and the whole conduit correlates strongly with the pulsatility of each inflow waveform, the total inflow pulsatility, and inflow frequency content, respectively. The complete CFD simulation matrix provided a unified analytical expression that predicts pulsatile power loss inside a one-degree offset DIPI geometry. The predictive accuracy of this expression is evaluated in comparison to the CFD evaluation of arbitrary multi-harmonic inflow waveforms. These results have important implications on hydrodynamic pipe networks that employ complex junctions as well as in the patient-to-patient comparison of surgically created vascular connections. Coupling the present analytical pulsatile power loss expression with non-dimensional steady power loss formulation provided a valuable predictive tool to estimate the pulsatile energy dissipation for any arbitrary junction geometry with minimum use of the costly CFD computations.
  • Thumbnail Image
    PublicationOpen Access
    Evidence for ferromagnetic coupling at the doped topological insulator/ferrimagnetic insulator interface
    (American Institute of Physics (AIP) Publishing, 2016) Liu, Wenqing; He, Liang; Zhou, Yan; Murata, Koichi; Ross, Caroline A.; Jiang, Ying; Wang, Yong; Xu, Yongbing; Zhang, Rong; Wang, Kang. L.; Department of Electrical and Electronics Engineering; Onbaşlı, Mehmet Cengiz; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 258783
    One of the major obstacles of the magnetic topological insulators (TIs) impeding their practical use is the low Curie temperature (T-c). Very recently, we have demonstrated the enhancement of the magnetic ordering in Cr-doped Bi2Se3 by means of proximity to the high-T-c ferrimagnetic insulator (FMI) Y3Fe5O12 and found a large and rapidly decreasing penetration depth of the proximity effect, suggestive of a different carrier propagation process near the TI surface. Here we further present a study of the interfacial magnetic interaction of this TI/FMI heterostrucutre. The synchrotron-based X-ray magnetic circular dichroism (XMCD) technique was used to probe the nature of the exchange coupling of the Bi2-xCrxSe3/Y3Fe5O12 interface. We found that the Bi2-xCrxSe3 grown on Y3Fe5O12(111) predominately contains Cr3+ cations, and the spin direction of the Cr3+ is aligned parallel to that of tetrahedral Fe3+ of the YIG, revealing a ferromagnetic exchange coupling between the Bi2-xCrxSe3 and the Y3Fe5O12. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
  • Thumbnail Image
    PublicationOpen Access
    High-quality MgB2 nanocrystals synthesized by using modified amorphous nano-boron powders: study of defect structures and superconductivity properties
    (American Institute of Physics (AIP) Publishing, 2019) Erdem, Emre; Hassler, Wolfgang; Department of Chemistry; N/A; Somer, Mehmet Suat; Bateni, Ali; Faculty Member; PhD Student; Department of Chemistry; College of Sciences; Graduate School of Sciences and Engineering
    Nano sized magnesium diboride (MgB2) samples were synthesized using various high-quality nano-B precursor powders. The microscopic defect structures of MgB2 samples were systematically investigated using X-ray powder diffraction, Raman, resistivity measurements and electron paramagnetic resonance spectroscopy. A significant deviation in the critical temperature T-c was observed due to defects and crystal distortion. The symmetry effect of the latter is also reflected on the vibrational modes in the Raman spectra. Scanning electron microscopy analysis demonstrate uniform and ultrafine morphology for the modified MgB2. Defect center in particular Mg vacancies influence the connectivity and the conductivity properties which are crucial for the superconductivity applications.
  • Placeholder
    Publication
    Nanoparticle silicalite-1 crystallization from clear solutions: nucleation
    (Elsevier Science Bv, 2009) Tokay, Begüm; Erdem-Şenatalar, Ayşe; Schueth, Ferdi; Thompson, Robert W.; Department of Chemistry; Somer, Mehmet Suat; Faculty Member; Department of Chemistry; College of Sciences; 178882
    Despite much effort spent by various research groups, there remain many aspects of nanoparticle silicalite-1 crystallization from clear solutions which require further investigation. In order to shed light, especially on the nucleation of silicalite-1, particle growth at 100 degrees C from several starting compositions known to yield colloidal silicalite-1, which have been studied previously by other researchers using various techniques, was followed in this study by laser light scattering using scattering angles of 90 degrees and 173 degrees, and zeta potential and pH measurements. Crystallinity was monitored by X-ray diffraction, Fourier transform infrared analysis and transmission electron microscopy. Thermogravimetric analyses and density measurements were also used to characterize the products obtained at various times during the syntheses. The results demonstrate that the distinct time of sudden jump in the effective diameter of the nanoparticles in solution, as observed more clearly by using the back-scattering device, and which marks the beginning of the constant linear growth rate of the particles, corresponds to the nucleation of the silicalite-1 crystal structure. This time was also shown to coincide with the exo-endo thermal switch time of the reaction mechanism, which has been observed previously by another research group. Nucleation was accompanied by an aggregation of a population of smaller particles, as indicated by the broadening of the particle size distribution, and the variation of the pH and zeta potential values during synthesis.
  • Placeholder
    Publication
    Resistive hydrogen sensors based on nanostructured metals and metal alloys
    (Amer Scientific Publishers, 2013) N/A; Department of Electrical and Electronics Engineering; Kılınç, Necmettin; Researcher; Department of Electrical and Electronics Engineering; College of Engineering; 59959
    Hydrogen (H-2), as a renewable energy source, has numerous applications such as chemical production, fuel cell technology, rocket engines, fuel for cars etc. The detection of H-2 is so important in safety issue due to the flammable and explosive properties of H-2 gas, in a H-2 source for leak detection and in H-2 production process because of real-time quantitative analysis of production. This paper reviews resistive type H-2 sensor based on palladium (Pd), platinum (Pt) and their alloy nano-structures in the forms of thin films, nanoporous films, nanowires, nanoparticles, nanotubes, etc. The sensing mechanism of the nanostructured Pd and Pt resistive sensor is discussed in separated section. Nanostructured Pd sensors show a decrease or an increase in their resistance towards H-2 gas depending on continuity of the nanostructure and will be examined in two parts: discontinuous (nano-gap based) and continuous Pd and Pd alloy nanostructure sensors. on the contrary to Pd nanostructure sensor, nanostructured Pt sensors require oxygen (O-2) to operate. There are limited numbers of publications about nanostructured Pt and Pt alloy sensors, so further investigation are needed to well understand sensing mechanism of the Pt sensors.
  • Placeholder
    Publication
    Strain modulated band gaps of semiconducting zigzag single walled carbon nanotubes
    (Natl Inst Optoelectronics, 2015) Eyecioğlu, Önder.; Mısırlıoğlu, Banu Süngü; Department of Physics; Dereli, Gülay; Other; Department of Physics; College of Sciences; N/A
    Strain can alter the electronic properties of materials. At the nanoscale, small displacements of atoms could have large effects. In this study, we have examined how elastic strain can modify the energy band gaps of semiconducting zigzag Single Walled Carbon Nanotubes (SWCNTs). The electronic structure of SWCNTs have been computed for each deformed configurations by means of real space, Order(N) Tight Binding Molecular Dynamic (O(N) TBMD) simulations. During the applications of uniaxial strain, carbon atoms are moved slightly from their equilibrium positions, but their atomic bonds are not broken. Three different kinds of semiconducting zigzag SWCNTs are chosen. (12,0) SWCNT, although a semiconducting SWCNT, is quasi-metallic in its pristine state. Application of stretching and compression opens its band gap. Thus under strain (12,0) SWCNT shows metallic-semiconducting transitions. (13,0) and (14,0) zigzag SWCNTs are semiconductors having energy band gap values of 0.44eV and 0.55eV in their pristine state. The energy band gap of (13,0) SWCNT decreases with increasing absolute value of compression. On the other hand, the energy band gap of (14,0) SWCNT decreases with increasing value of tension. So in both cases, the energy band gap closes and semiconducting metallic transitions are observed. Flexibilities of the stretched hexagonal network of SWCNTs are displayed in terms of carbon-carbon bond-lengths, bond-angles and radial distribution functions. Correlations between the strain induced structural changes and the electronic properties of SWCNTs are discussed.
  • Placeholder
    Publication
    Surface hardening of Ti-AL-V superalloy spinal implant by using the boronization method
    (IOS Press, 2024) Hekimoğlu, Mehdi; Özer, Hidir; Onursal, Ceylan; Department of Chemistry; Kiraz, Kamil; Özer, Ali Fahir; Department of Chemistry; College of Sciences; School of Medicine
    Background: We compared the raw Ti-Al-V super alloy transpedicular implant screws with boronized and surfacehardened transpedicular implant screws. OBJECTIVE: To improve patients' postoperative prognosis with the production of harder and less fragile screws. METHODS: Surface hardening was achieved by applying green-body encapsulation of the specimen with elemental boron paste which is sintered at elevated temperatures to ensure the boron-metal diffusion. Boron transported into the Ti-Al-V super alloy matrix gradually while suppressing aluminum and a homogeneously boronized surface with a thickness of similar to 15 microns was obtained. The uniform external shell was enriched with TiB2, which is one of the hardest ceramics. The Ti-Al-V core material, where boron penetration diminishes, shows cohesive transition and ensures intact core-surface structure. RESULTS: Scanning electron microscope images confirmed a complete homogeneous, uniform and non-laminating surface formation. Energy-dispersive X-ray monitored the elemental structural mapping and proved the replacement of the aluminum sites on the surface with boron ending up the TiB2. The procedure was 8.6 fold improved the hardness and the mechanical resistance of the tools. CONCLUSIONS: Surface-hardened, boronized pedicular screws can positively affect the prognosis. In vivo studies are needed to prove the safety of use.