Research Outputs
Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2
Browse
1 results
Search Results
Publication Metadata only A LES/PDF simulator on block-structured meshes(Taylor & Francis Ltd, 2019) Pope, Stephen B.; N/A; Department of Mechanical Engineering; Türkeri, Hasret; Muradoğlu, Metin; PhD Student; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 46561A block-structured mesh large-eddy simulation (LES)/probability density function (PDF) simulator is developed within the OpenFOAM framework for computational modelling of complex turbulent reacting flows. The LES/PDF solver is a hybrid solution methodology consisting of (i) a finite-volume (FV) method for solving the filtered mass and momentum equations (LES solver), and (ii) a Lagrangian particle-based Monte Carlo algorithm (PDF solver) for solving the modelled transport equation of the filtered joint PDF of compositions. Both the LES and the PDF methods are developed and combined to form a hybrid LES/PDF simulator entirely within the OpenFOAM framework. The in situ adaptive tabulation method [S.B. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, Combust. Theory Model. 1 (1997), pp. 41-63; L. Lu, S.R. Lantz, Z. Ren, and B.S. Pope, Computationally efficient implementation of combustion chemistry in parallel PDF calculations, J. Comput. Phys. 228 (2009), pp. 5490-5525] is incorporated into the new LES/PDF solver for efficient computations of combustion chemistry with detailed reaction kinetics. The method is designed to utilise a block-structured mesh and can readily be extended to unstructured grids. The three-stage velocity interpolation method of Zhang and Haworth [A general mass consistency algorithm for hybrid particle/finite-volume PDF methods, J. Comput. Phys. 194 (2004), pp. 156-193] is adapted to interpolate the LES velocity field onto particle locations accurately and to enforce the consistency between LES and PDF fields at the numerical solution level. The hybrid algorithm is fully parallelised using the conventional domain decomposition approach. A detailed examination of the effects of each stage and the overall performance of the velocity interpolation algorithm is performed. Accurate coupling of the LES and PDF solvers is demonstrated using the one-way coupling methodology. Then the fully two-way coupled LES/PDF solver is successfully applied to simulate the Sandia Flame-D, and a turbulent non-swirling premixed flame and a turbulent swirling stratified flame from the Cambridge turbulent stratified flame series [M.S. Sweeney, S. Hochgreb, M.J. Dunn, and R.S. Barlow, The structure of turbulent stratified and premixed methane/air flames I: Non-swirling flows, Combust. Flame 159 (2012), pp. 2896-2911; M.S. Sweeney, S. Hochgreb, M.J. Dunn, and R.S. Barlow, The structure of turbulent stratified and premixed methane/air flames II: Swirling flows, Combust. Flame 159 (2012), pp. 2912-2929]. It is found that the LES/PDF method is very robust and the results are in good agreement with the experimental data for both flames.