Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 3 of 3
  • Placeholder
    Publication
    Hydrogel muscles powering reconfigurable micro-metastructures with wide-spectrum programmability
    (Nature Portfolio, 2023) Zhang, Mingchao; Pal, Aniket; Zheng, Zhiqiang; Gardi, Gaurav; Yildiz, Erdost; Department of Mechanical Engineering; Sitti, Metin; Department of Mechanical Engineering; College of Engineering; School of Medicine
    Stimuli-responsive geometric transformations endow metamaterials with dynamic properties and functionalities. However, using existing transformation mechanisms to program a single geometry to transform into diverse final configurations remains challenging, imposing crucial design restrictions on achieving versatile functionalities. Here, we present a programmable strategy for wide-spectrum reconfigurable micro-metastructures using linearly responsive transparent hydrogels as artificial muscles. Actuated by the hydrogel, the transformation of micro-metastructures arises from the collaborative buckling of their building blocks. Rationally designing the three-dimensional printing parameters and geometry features of the metastructures enables their locally isotropic or anisotropic deformation, allowing controllable wide-spectrum pattern transformation with programmable chirality and optical anisotropy. This reconfiguration mechanism can be applied to various materials with a wide range of mechanical properties. Our strategy enables a thermally reconfigurable printed metalattice with pixel-by-pixel mapping of different printing powers and angles for displaying or hiding complex information, providing opportunities for encryption, miniature robotics, photonics and phononics applications. It is difficult to program a single stimuli-responsive geometry to transform into diverse final configurations in a systematic manner. Here, linearly responsive transparent hydrogels are developed to create micro-metastructures with wide-spectrum thermal reconfigurability.
  • Thumbnail Image
    PublicationOpen Access
    Liquid crystal eastomer actuated reconfigurable microscale kirigami metastructures
    (Wiley, 2021) Zhang, Mingchao; Shahsavan, Hamed; Guo, Yubing; Pena-Francesch, Abdon; Zhang, Yingying; Department of Mechanical Engineering; Sitti, Metin; Faculty Member; Department of Mechanical Engineering; College of Engineering; School of Medicine; 297104
    Programmable actuation of metastructures with predesigned geometrical configurations has recently drawn significant attention in many applications, such as smart structures, medical devices, soft robotics, prosthetics, and wearable devices. Despite remarkable progress in this field, achieving wireless miniaturized reconfigurable metastructures remains a challenge due to the difficult nature of the fabrication and actuation processes at the micrometer scale. Herein, microscale thermo-responsive reconfigurable metasurfaces using stimuli-responsive liquid crystal elastomers (LCEs) is fabricated as an artificial muscle for reconfiguring the 2D microscale kirigami structures. Such structures are fabricated via two-photon polymerization with sub-micrometer precision. Through rationally designed experiments guided by simulations, the optimal formulation of the LCE artificial muscle is explored and the relationship between shape transformation behaviors and geometrical parameters of the kirigami structures is build. As a proof of concept demonstration, the constructs for temperature-dependent switching and information encryption is applied. Such reconfigurable kirigami metastructures have significant potential for boosting the fundamental small-scale metastructure research and the design and fabrication of wireless functional devices, wearables, and soft robots at the microscale as well.
  • Placeholder
    Publication
    Liquid metal microdroplet-initiated ultra-fast polymerization of a stimuli-responsive hydrogel composite
    (Wiley-V C H Verlag Gmbh, 2023) Zhang, Jianhua; Liao, Jiahe; Liu, Zemin; Zhang, Rongjing; Department of Mechanical Engineering; Sitti, Metin; Department of Mechanical Engineering; College of Engineering; School of Medicine
    Recent advances in composite hydrogels achieve material enhancement or specialized stimuli-responsive functionalities by pairing with a functional filler. Liquid metals (LM) offer a unique combination of chemical, electrical, and mechanical properties that show great potential in hydrogel composites. Polymerization of hydrogels with LM microdroplets as initiators is a particularly interesting phenomenon that remains in its early stage of development. In this work, an LM-hydrogel composite is introduced, in which LM microdroplets dispersed inside the hydrogel matrix have dual functions as a polymerization initiator for a polyacrylic acid-poly vinyl alcohol (PAA/PVA) network and, once polymerized, as passive inclusion to influence its material and stimuli-responsive characteristics. It is demonstrated that LM microdroplets enable ultra-fast polymerization in approximate to 1 min, compared to several hours by conventional polymerization techniques. The results show several mechanical enhancements to the PAA/PVA hydrogels with LM-initiated polymerization. It is found that LM ratios strongly influence stimuli-responsive behaviors in the hydrogels, including swelling and ionic bending, where higher LM ratios are found to enhance ionic actuation performance. The dual roles of LM in this composite are analyzed using the experimental characterization results. These LM-hydrogel composites, which are biocompatible, open up new opportunities in future soft robotics and biomedical applications. A composite hydrogel embedded with liquid metal (LM) microdroplets is introduced, where the LM microdroplets have dual roles of initiating ultra-fast polymerization and passive inclusion. The physical effects of LM on polymerization and stimuli-responsive behaviors are analyzed, including swelling and ionic actuation due to osmotic pressure differences. Their benefits to the LM-hydrogel functionalities, such as robot locomotion, are demonstrated.