Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 10 of 36
  • Placeholder
    Publication
    3D model retrieval using probability density-based shape descriptors
    (IEEE Computer Society, 2009) Akgul, Ceyhun Burak; Sankur, Buelent; Schmitt, Francis; Department of Computer Engineering; Yemez, Yücel; Faculty Member; Department of Computer Engineering; College of Engineering; 107907
    We address content-based retrieval of complete 3D object models by a probabilistic generative description of local shape properties. The proposed shape description framework characterizes a 3D object with sampled multivariate probability density functions of its local surface features. This density-based descriptor can be efficiently computed via kernel density estimation (KDE) coupled with fast Gauss transform. The nonparametric KDE technique allows reliable characterization of a diverse set of shapes and yields descriptors which remain relatively insensitive to small shape perturbations and mesh resolution. Density-based characterization also induces a permutation property which can be used to guarantee invariance at the shape matching stage. As proven by extensive retrieval experiments on several 3D databases, our framework provides state-of-the-art discrimination over a broad and heterogeneous set of shape categories.
  • Placeholder
    Publication
    A classification of concurrency bugs in java benchmarks by developer intent
    (Association for Computing Machinery (ACM), 2006) Department of Computer Engineering; Department of Computer Engineering; N/A; Keremoğlu, M. Erkan; Taşıran, Serdar; Elmas, Tayfun; Researcher; Faculty Member; PhD Student; Department of Computer Engineering; College of Engineering; College of Engineering; Graduate School of Sciences and Engineering; N/A; N/A; N/A
    This work addresses the issue of selecting the formal correctness criterion for a concurrent Java program that best corresponds to the developer's intent. We study a set of concurrency-related bugs detected in Java benchmarks reported in the literature. On these programs, we determine whether race-freedom, atomicity or refinement is the simplest and most appropriate criterion for program correctness. Our purpose is to demonstrate empirically the fact that the appropriate fix for a concurrency error and the selection of a program analysis tool for detecting such an error must be based on the proper expression of the designer's intent using a formal correctness criterion.
  • Thumbnail Image
    PublicationOpen Access
    A deep learning approach for data driven vocal tract area function estimation
    (Institute of Electrical and Electronics Engineers (IEEE), 2018) Department of Computer Engineering; Department of Electrical and Electronics Engineering; Erzin, Engin; Asadiabadi, Sasan; Faculty Member; Department of Computer Engineering; Department of Electrical and Electronics Engineering; College of Sciences; Graduate School of Sciences and Engineering; 34503; N/A
    In this paper we present a data driven vocal tract area function (VTAF) estimation using Deep Neural Networks (DNN). We approach the VTAF estimation problem based on sequence to sequence learning neural networks, where regression over a sliding window is used to learn arbitrary non-linear one-to-many mapping from the input feature sequence to the target articulatory sequence. We propose two schemes for efficient estimation of the VTAF; (1) a direct estimation of the area function values and (2) an indirect estimation via predicting the vocal tract boundaries. We consider acoustic speech and phone sequence as two possible input modalities for the DNN estimators. Experimental evaluations are performed over a large data comprising acoustic and phonetic features with parallel articulatory information from the USC-TIMIT database. Our results show that the proposed direct and indirect schemes perform the VTAF estimation with mean absolute error (MAE) rates lower than 1.65 mm, where the direct estimation scheme is observed to perform better than the indirect scheme.
  • Placeholder
    Publication
    A deterministic analysis of an online convex mixture of experts algorithm
    (Institute of Electrical and Electronics Engineers (IEEE), 2015) Özkan, Hüseyin; Dönmez, Mehmet A.; N/A; Tunç, Sait; Master Student; Graduate School of Sciences and Engineering; N/A
    We analyze an online learning algorithm that adaptively combines outputs of two constituent algorithms (or the experts) running in parallel to estimate an unknown desired signal. This online learning algorithm is shown to achieve and in some cases outperform the mean-square error (MSE) performance of the best constituent algorithm in the steady state. However, the MSE analysis of this algorithm in the literature uses approximations and relies on statistical models on the underlying signals. Hence, such an analysis may not be useful or valid for signals generated by various real-life systems that show high degrees of nonstationarity, limit cycles and that are even chaotic in many cases. In this brief, we produce results in an individual sequence manner. In particular, we relate the time-accumulated squared estimation error of this online algorithm at any time over any interval to the one of the optimal convex mixture of the constituent algorithms directly tuned to the underlying signal in a deterministic sense without any statistical assumptions. In this sense, our analysis provides the transient, steady-state, and tracking behavior of this algorithm in a strong sense without any approximations in the derivations or statistical assumptions on the underlying signals such that our results are guaranteed to hold. We illustrate the introduced results through examples.
  • Placeholder
    Publication
    A multi-start granular skewed variable neighborhood tabu search for the roaming salesman problem
    (Elsevier, 2021) Shahmanzari, Masoud; Department of Business Administration; Aksen, Deniz; Faculty Member; Department of Business Administration; College of Administrative Sciences and Economics; 40308
    This paper presents a novel hybrid metaheuristic algorithm for the Roaming Salesman Problem (RSP), called Multi-Start Granular Skewed Variable Neighborhood Tabu Search (MS-GSVNTS). The objective in RSP is to design daily tours for a traveling campaigner who collects rewards from activities in cities during a fixed planning horizon. RSP exhibits a number of exclusive features: It is selective which implies that not every node needs a visit. The rewards of cities are time-dependent. Daily tours can be either an open or a closed tour which implies the absence of a fixed depot. Instead, there is a campaign base that is to be attended frequently. Multiple visits are allowed for certain cities. The proposed method MS-GSVNTS is tested on 45 real-life instances from Turkey which are built with actual travel distances and times and on 10 large scale instances. Computational results suggest that MS-GSVNTS is superior to the existing solution methods developed for RSP. It produces 50 best known solutions including 18 ties and 32 new ones. The performance of MS-GSVNTS can be attributed to its multi-start feature, rich neighborhood structures, skewed moves, and granular neighborhoods.
  • Placeholder
    Publication
    A second-order adaptive network model for organizational learning and usage of mental models for a team of match officials
    (2022) Kuilboer, Sam; Sieraad, Wesley; van Ments, Laila; Treur, Jan; Department of Computer Engineering; Canbaloğlu, Gülay; Undergraduate Student; Department of Computer Engineering; College of Engineering; N/A
    This paper describes a multi-level adaptive network model for mental processes making use of shared mental models in the context of organizational learning in team-related performances. The paper describes the value of using shared mental models to illustrate the concept of organizational learning, and factors that influence team performances by using the analogy of a team of match officials during a game of football and show their behavior in a simulation of the shared mental model. The paper discusses potential elaborations of the different studied concepts, as well as implications of the paper in the domain of teamwork and team performance, and in terms of organizational learning.
  • Placeholder
    Publication
    Augmented tabletop games workshop
    (Association for Computing Machinery (ACM), 2017) Toups, Zachary O.; LaLone, Nicolas; Tanenbaum, Joshua; Trammell, Aaron; Hammer, Jessica; Depping, Ansgar; N/A; Buruk, Oğuz Turan; PhD Student; KU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR); Graduate School of Social Sciences and Humanities; N/A
    This workshop gathers researchers and practitioners interested in augmented tabletop games: physical games that include digital augmentation. Participants will compile ways of knowing for this unique research space and share their methods of research, demonstrating, where possible, through a research gaming and prototyping session. Post-workshop, we will assemble an online compendium for findings, which will include video sketches recorded during the workshop and an annotated bibliography.
  • Placeholder
    Publication
    Challenges and applications of automated extraction of socio-political events from text (case 2021): workshop and shared task report
    (Association for Computational Linguistics (ACL), 2021) Tanev, Hristo; Zavarella, Vanni; Piskorski, Jakub; Yeniterzi, Reyyan; Villavicencio, Aline; Department of Sociology; Department of Sociology; N/A; Department of Computer Engineering; Hürriyetoğlu, Ali; Yörük, Erdem; Mutlu, Osman; Yüret, Deniz; Teaching Faculty; Faculty Member; PhD Student; Faculty Member; Department of Sociology; Department of Computer Engineering; College of Social Sciences and Humanities; College of Social Sciences and Humanities; Graduate School of Sciences and Engineering; College of Engineering; N/A; 28982; N/A; 179996
    This workshop is the fourth issue of a series of workshops on automatic extraction of sociopolitical events from news, organized by the Emerging Market Welfare Project, with the support of the Joint Research Centre of the European Commission and with contributions from many other prominent scholars in this field. The purpose of this series of workshops is to foster research and development of reliable, valid, robust, and practical solutions for automatically detecting descriptions of sociopolitical events, such as protests, riots, wars and armed conflicts, in text streams. This year workshop contributors make use of the state-of-the-art NLP technologies, such as Deep Learning, Word Embeddings and Transformers and cover a wide range of topics from text classification to news bias detection. Around 40 teams have registered and 15 teams contributed to three tasks that are i) multilingual protest news detection, ii) fine-grained classification of socio-political events, and iii) discovering Black Lives Matter protest events. The workshop also highlights two keynote and four invited talks about various aspects of creating event data sets and multi- and cross-lingual machine learning in few- and zero-shot settings.
  • Placeholder
    Publication
    Classification of semantic relations between nominals
    (Springer, 2009) Girju, Roxana; Nakov, Preslav; Nastase, Vivi; Szpakowicz, Stan; Turney, Peter; Department of Computer Engineering; Yüret, Deniz; Faculty Member; Department of Computer Engineering; College of Engineering; 179996
    The NLP community has shown a renewed interest in deeper semantic analyses, among them automatic recognition of semantic relations in text. We present the development and evaluation of a semantic analysis task: automatic recognition of relations between pairs of nominals in a sentence. The task was part of SemEval-2007, the fourth edition of the semantic evaluation event previously known as SensEval. Apart from the observations we have made, the long-lasting effect of this task may be a framework for comparing approaches to the task. We introduce the problem of recognizing relations between nominals, and in particular the process of drafting and refining the definitions of the semantic relations. We show how we created the training and test data, list and briefly describe the 15 participating systems, discuss the results, and conclude with the lessons learned in the course of this exercise.
  • Thumbnail Image
    PublicationOpen Access
    Computational modeling of organisational learning by self-modeling networks
    (Elsevier, 2022) Treur, Jan; Roelofsma, Peter H. M. P.; Department of Computer Engineering; Canbaloğlu, Gülay; Department of Computer Engineering; Graduate School of Sciences and Engineering
    Within organisational learning literature, mental models are considered a vehicle for both individual learning and organizational learning. By learning individual mental models (and making them explicit), a basis for formation of shared mental models for the level of the organization is created, which after its formation can then be adopted by individuals. This provides mechanisms for organizational learning. These mechanisms have been used as a basis for an adaptive computational network model. The model is illustrated by a not too complex but realistic case study.