Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 3 of 3
  • Placeholder
    Publication
    A grid of dielectric sensors to monitor mold filling and resin cure in resin transfer molding
    (Elsevier Sci Ltd, 2009) N/A; Department of Mechanical Engineering; Yenilmez, Bekir; Sözer, Murat; PhD Student; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 10357
    A grid of 50 dielectric sensors has been embedded in the walls of a mold to monitor resin transfer molding (RTM). The capacitance of each sensor increased as resin occupied the space between sensor plates, and it decreased with curing. Monitoring data can be used for process control to prevent dry spots and to determine when to de-mold the part. In previous studies, Skordos et al. [Skordos AA, Karkanas PI, Partridge IK. A dielectric sensor for measuring flow in resin transfer molding. Meas Sci Technol 2000; 11:25-31] used a lineal sensor, Hegg et al. [Hegg MC, Ogale A, Mescher A, Mamishev AV, Minaie B. Remote monitoring of resin transfer molding processes by distributed dielectric sensors. J Compos Mater 2005;39(17)] used three large sensors. As experimentally shown in this study, these lineal or large-plate dielectric sensors may mislead since a sensor measures total fraction of the sensor's plate area occupied by resin but not the resin's whereabouts. To avoid ambiguity and yet maintain detailed monitoring, a sensor grid was made at the projections of embedded orthogonal electrodes. The developed sensor operation system eliminated tedious and costly manufacturing of conventionally shielded separate sensors. The success of the developed sensor system was demonstrated in RTM experiments.
  • Placeholder
    Publication
    Compaction of e-glass fabric preforms in the vacuum infusion process, A: characterization experiments
    (Elsevier Sci Ltd, 2009) N/A; Department of Mechanical Engineering; Yenilmez, Bekir; Sözer, Murat; PhD Student; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 110357
    An experimental procedure was designed to realistically characterize the compaction behavior of e-glass fabric preforms during initial application of vacuum and mold filling stages of Vacuum Infusion (VI). To mimic VI, the loading (compaction) was done on a dry preform, and the unloading (decompaction) was done after the preform was saturated with resin. When fabrics were wetted at constant full compaction pressure, a significant decrease in thickness was observed for the random fabric, but not for woven and biaxial fabrics. The rate of change of thickness, ∂h/∂t had different signs and order of magnitudes when various constant compaction pressures were applied during fiber relaxation stage. Thus, previous compaction-mold filling models based on static relationship between thickness and compaction pressure do not appropriately simulate the compaction physics of VI. Time-dependent database of this study is a useful and straightforward tool to model VI, as demonstrated in Part B of this study.
  • Placeholder
    Publication
    Direct ink writing (DIW) of structural and functional ceramics: recent achievements and future challenges
    (Elsevier Sci Ltd, 2021) N/A; Department of Mechanical Engineering; Shahzad, Aamir; Lazoğlu, İsmail; PhD Student; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 179391
    Along with vast research on the additive manufacturing (AM) of polymeric and metallic materials, three-dimensional (3D) manufacturing of ceramic materials is now the modern trend. Among all the additive manufacturing techniques, Direct Ink Writing (DIW) permits the ease of design and rapid manufacturing of ceramic-based materials in complicated geometries. This paper presents an outline of the contributions and tasks in the fabrication 3D ceramic parts by the DIW technique. The current state-of-the-art manufacturing of various ceramics such as alumina, zirconia, and their composites through Direct Ink Writing (DIW) is described in detail. Moreover, this review paper aims at the innovations in the DIW approach of ceramic materials and introduces the progression of the DIW for the manufacturing of ceramics. Most importantly, the DIW technique has been explained in detail with illustrations. The prospects and challenges related to the DIW technique are also underscored.