Research Outputs
Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2
Browse
12 results
Search Results
Publication Restricted A fundamental study on the synthesis of aerogel supported bimetallik nanoparticles using supercritical deposition(Koç University, 2012) Bozdağ, Selmi Erim; Erkey, Can; 0000-0001-6539-7748; Koç University Graduate School of Sciences and Engineering; Chemical and Biological Engineering; 29633Publication Metadata only Application of aerogels in optical devices(Springer Science and Business Media Deutschland Gmbh, 2023) Özbakır, Yaprak; Jonáš, Alexandr; Department of Electrical and Electronics Engineering;Department of Chemical and Biological Engineering;Department of Physics; Kiraz, Alper; Erkey, Can; College of Engineering; College of SciencesIntegrated optical devices can provide sophisticated, innovative solutions for handling light in a number of scientific and technological applications ranging from detection and chemical and biological analysis, through imaging to activation of photochemical reactions. Aerogels – with their unusually low refractive index, spectrally tunable optical transparency, possibility of doping the bulk material with chemically active atoms, molecules, and nanoparticles, and relatively low production cost – represent an attractive platform for fabricating integrated photonic circuits. This chapter provides a comprehensive review of the literature on the use of aerogels for a wide range of optical applications. First, we present an overview of the material properties of aerogels that are essential for their optical applications, concentrating, in particular, on the use of aerogels for controlled light guiding. Subsequently, we discuss possible techniques for fabricating channel waveguides in aerogel monoliths and describe in detail methods for making the channel surfaces hydrophobic. We summarize the studies in the literature on the characterization of light propagation in liquid-filled channels formed within aerogel monoliths, as well as on the quantification of light-guiding characteristics of aerogel-based waveguides. We then describe the current and possible future applications of aerogel-based optofluidic waveguides and briefly address the subject of using aerogels for fabricating lightweight optical reflectors. We conclude by a perspective on the emerging directions in the development of aerogel-based optical and photonic components and devices. © Springer Nature Switzerland AG 2023.Publication Restricted Development of aerogel based optofluidic microreactors(Koç University, 2018) Özbakır, Yaprak; Erkey, Can; Kiraz, Alper; 0000-0001-6539-7748; 0000-0001-7977-1286; Koç University Graduate School of Sciences and Engineering; Chemical and Biological Engineering; 29633; 22542Publication Restricted Development of composites of silica aerogels with hydroxy-terminated poly(dimethylsiloxane)(Koç University, 2014) Şanlı, Deniz; Erkey, Can; 0000-0001-6539-7748; Koç University Graduate School of Sciences and Engineering; Chemical and Biological Engineering; 29633Publication Restricted Experimental and theoretical investigation of supercritical drying of gels(Koç University, 2019) Şahin, İbrahim; Erkey, Can; 0000-0001-6539-7748; Koç University Graduate School of Sciences and Engineering; Chemical and Biological Engineering; 29633Publication Restricted Investigation of aerogel based systems for drug delivery(Koç University, 2015) Demir, Zeynep Ülker; Erkey, Can; 0000-0001-6539-7748; Koç University Graduate School of Sciences and Engineering; Chemical and Biological Engineering; 29633Publication Restricted Investigation of the thermodynamics of carbon dioxide and methane adsorption on various aerogels(Koç University, 2017) Anas, Muhammad; Erkey, Can; 0000-0001-6539-7748; Koç University Graduate School of Sciences and Engineering; Chemical and Biological Engineering; 29633Publication Restricted Investigations of sol-gel parameters, thermal and optical properties of silica aerogels for large scale production(Koç University, 2014) Karayılan, Metin; Erkey, Can; 0000-0001-6539-7748; Koç University Graduate School of Sciences and Engineering; Chemical and Biological Engineering; 29633Publication Restricted Mathematical modeling of silica alcogel drying with supercritical carbon dioxide(Koç University, 2013) Özbakır, Yaprak; Erkey, Can; 0000-0001-6539-7748; Koç University Graduate School of Sciences and Engineering; Chemical and Biological Engineering; 29633Publication Restricted PEG-Hydrogel coated silica aerogels A novel drug delivery system(Koç University, 2010) Giray, Seda; Erkey, Can; 0000-0001-6539-7748; Koç University Graduate School of Sciences and Engineering; Chemical and Biological Engineering; 29633