Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    PublicationRestricted
    Designing a thermal management system for lithium-Ion battery packs used in electrical vehicles
    (Koç University, 2019) Alipour, Mohammad; Kızılel, Seda; 0000-0001-9092-2698; Koç University Graduate School of Sciences and Engineering; Chemical and Biological Engineering; 28376
  • Thumbnail Image
    PublicationRestricted
    Development of high purity lithium BİS(OXALATE)BORATE, LiB(C2O4)2 (LiBOB) and its effect on the stability of standard and new generation electrode materials
    (Koç University, 2022) Subaşı, Yaprak; Somer, Mehmet Suat; 0000-0001-5606-9101; Koç University Graduate School of Sciences and Engineering; 178882
  • Thumbnail Image
    PublicationRestricted
    Electric bus fleet composition and scheduling
    (Koç University, 2021) Yıldırım, Şule; Yıldız, Barış; 0000-0002-3839-8371; Koç University Graduate School of Sciences and Engineering; Industrial Engineering; 258791
  • Thumbnail Image
    PublicationRestricted
    Graphene (oxide)-metal/metal (hydr)oxide composites: synthesis and applications in electrochemical energy storage and conversion
    (Koç University, 2018) Öztuna, Feriha Eylül; Ünal, Uğur; 0000-0003-4718-1243; Koç University Graduate School of Sciences and Engineering; Materials Science and Engineering; 42079
  • Placeholder
    Publication
    Numerical investigation of design parameters effects on performance of cooling system designed for a lithium-ion cell
    (Yildiz Technical University, 2020) N/A; Department of Chemical and Biological Engineering; Alipour, Mohammad; Kızılel, Rıza; PhD Student; Researcher; Department of Chemical and Biological Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 114475
    A 3D numerical approach using the Finite Element Method (FEM) is applied to model the thermal behavior of multilayer 20Ah LiFePO4/Graphite cell and to design a cooling system. A three-dimensional multilayer cell model with heterogeneous thermal properties for the various cell layers is developed to study the effects of design parameters on cooling performance of mini-channel aluminum plates. As design parameters, effects of channel width, a number of channel passes, inlet mass flow rate, and heat transfer medium were considered. Using the optimized parameters, the cooling performance of water-cooling and air-cooling systems were compared. The results showed that the designed cooling system provided good cooling performance in controlling the temperature rise and uniformity. Inlet mass flow rate was the main influential parameter in controlling the cooling performance. The optimum number of channel passes was found to be seven passes. Channel width mainly controlled the pressure drop and had minor effects on temperature. At higher discharge current rates, the water-cooling system showed better cooling performance in dropping the maximum temperature and making uniform surface and inner temperature profile. Moreover, pressure drop, and power consumption rates become significantly lower for water cooling system.