Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 10 of 154
  • Placeholder
    Publication
    “O/F shift” in hybrid rockets
    (American Institute of Aeronautics and Astronautics, 2014) Toson, Elena; Evans, Brian; Department of Mechanical Engineering; Karabeyoğlu, Mustafa Arif; Faculty Member; Department of Mechanical Engineering; College of Engineering; 114595
    For most hybrid rocket systems, oxidizer to fuel ratio (O/F) changes over time due to 1) natural growth of the fuel port diameter and 2) oxidizer flow rate variations, if throttling is employed. This phenomenon, which is referred to as “O/F shift”, leads to a reduction in motor performance. Note that liquid or solid rocket motors are not subject to temporal O/F variations, which is wrongfully considered as one of the most critical disadvantages of hybrid rockets. In this paper, the effect of “O/F shift” is quantified for hybrid rocket motors. Analytical formulas for the temporal O/F variation and the overall c* efficiency drop associated with the variation has been derived for single circular port motors. It has been shown that for a typical motor, c* efficiency drop due to O/F variation is well below 0.2%, a value which is too small to be measured in an actual motor test. It is also shown that for a wagon wheel type multiport configuration (with triangular ports), efficiency drop is significantly worse than the single circular port case. Even for the multiport systems, the shift does not have a controlling effect on the overall efficiency of the motor. A number of strategies have been outlined to control the adverse effects of O/F variation in a hybrid rocket. For a single circular port design with limited throttling, no mitigation is required. For systems with deep throttling requirements, aft oxidizer injection seems like a viable strategy to retain a high level of overall efficiency.
  • Placeholder
    Publication
    A computational study of drop formation in an axisymmetric flow-focusing device
    (Amer Soc Mechanical Engineers, 2006) Department of Mechanical Engineering; Department of Mechanical Engineering; Filiz, İsmail; Muradoğlu, Metin; N/A; Faculty Member; Department of Mechanical Engineering; College of Engineering; College of Engineering; N/A; 46561
    We investigate the formation and dynamics of drops computationally in an axisymetric geometry using a Front-Tracking/Finite-Difference (FT/FD) method. The effects of viscosity ratio between inner and outer liquids on the drop creation process and drop size distribution are examined. It is found that the viscosity ratio critically influences the drop formation process and the final drop distribution. We found that, for small viscosity ratios, i.e., 0.1 < lambda < 0.5 drop size is about the size of the orifice and drop distribution is highly monodisperse. When viscosity ratio is increased, i.e., 0.5 < lambda < I a smaller drop is created just after the main drop. For even higher viscosity ratios, the drop distribution is usually monodisperse but a satellite drop is created in some cases. The effect of the flow rates in the inner jet and the co flowing annulus are also studied. It is found that the drop size gets smaller as Q(in) / Q(out) is reduced while keeping the outer flow rate constant.
  • Placeholder
    Publication
    A dynamic model of an overhung rotor with ball bearings
    (Sage, 2011) Şanlıtürk, K. Y.; N/A; Çakmak, Onur; PhD Student; Graduate School of Sciences and Engineering; N/A
    A ball bearing comprising rolling elements, inner and outer rings, and a cage structure can be described as a multi-body system (MBS). In order to predict the dynamic behaviour and resonance characteristics of a rotor-ball bearing system, it can be modelled and analysed as a MBS with flexible and rigid parts. In this study, a ball bearing is modelled with MBS approach using MSC ADAMS commercial software. The Hertzian theory is used for modelling the contact dynamics between the balls and the rings. The ball bearing model is then assembled with the rotor model which comprised a shaft and a disc positioned at the free end of the shaft. The ball bearing model is used with both flexible and rigid shaft assumptions in order to highlight the differences between the two cases. For the flexible shaft case, the MBS model also included a finite element model of the shaft. As expected, it is necessary to include the flexibility of the shaft in the model in order to to predict the changes in the modal characteristics of the system as a function of the rotor speed. Furthermore, including the gyroscopic effects leads to observe the forward and backward travelling modes with different natural frequencies. The effects of the bearing diametral clearance and localized defects on the inner and outer rings are modelled and analysed using the model developed. Also, the effects of the rotor unbalance on the vibration level of the whole system are examined. A test rig - consisting of two ball bearings, a shaft, and a disc - is also designed and developed so as to validate the theoretical model using experimental data. Order tracking and modal analyses are carried out and Campbell diagrams are obtained. Finally, the theoretical and the experimental results are compared and a refined MBS model is obtained for further analyses.
  • Placeholder
    Publication
    A finite-volume/front-tracking method for computations of multiphase flows in complex geometries
    (Springer, 2006) N/A; Department of Mechanical Engineering; N/A; N/A; Muradoğlu, Metin; Olgaç, Ufuk; Kayaalp, Arif Doruk; Faculty Member; Master Student; Master Student; Department of Mechanical Engineering; College of Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; 46561; N/A; N/A
    A finite-volume/front-tracking (FV/FT) method is developed for computations of multiphase flows in complex geometries. The front-tracking methodology is combined with a dual time-stepping based FV method. The interface between phases is represented by connected Lagrangian marker points. An efficient algorithm is developed to keep track of the marker points in curvilinear grids. The method is implemented to solve two-dimensional (plane or axisymmetric) dispersed multiphase flows and is validated for the motion of buoyancy-driven drops in a periodically constricted tube with cases where drop breakup occurs.
  • Placeholder
    Publication
    A front tracking method for computational modeling of temperature and species gradient based phase change
    (International Conference on Computational Fluid Dynamics 2016, 2016) N/A; N/A; Department of Mechanical Engineering; Irfan, Muhammad; Muradoğlu, Metin; PhD Student; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 46561
    A front-tracking method is developed for the direct numerical simulation of evaporation process in a liquid–gas multiphase system. One-field formulation is used to solve the flow, energy and species equations in the framework of the front tracking method, with suitable jump conditions at the interface. Both phases are assumed to be incompressible; however, the divergence-free velocity field condition is modified to account for the phase-change/mass-transfer at the interface. Both temperature and species gradient driven evaporation/phase-change processes are simulated. For the species gradient driven phase change process, the Clausius–Clapeyron equilibrium relation is used to find the vapor mass fraction and subsequently the evaporation mass flux at the interface. A number of benchmark cases are first studied to validate the implementation. The numerical results are found to be in excellent agreement with the analytical solutions for all the studied cases. The methods are then applied to study the evaporation of a static as well as a single and two droplets systems falling in the gravitational field. The methods are demonstrated to be grid convergent and the mass is globally conserved during the phase change process for both the static and moving droplet cases.
  • Placeholder
    Publication
    A front-tracking method for direct numerical simulation of viscoelastic interfacial flows
    (International Conference on Computational Fluid Dynamics 2016, 2016) N/A; N/A; Department of Mechanical Engineering; Izbassarov, Daulet; Muradoğlu, Metin; PhD Student; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 46561
    A front-tracking method is developed for direct numerical simulations of viscoelastic two-phase systems in which one or both phases could be viscoelastic. One set of governing equations is written for the whole computational domain and different phases are treated as a single fluid with variable material and rheological properties. The interface is tracked explicitly using a Lagrangian grid while the flow equations are solved on a fixed Eulerian grid. The surface tension is computed at the interface using the Lagrangian grid and included into the momentum equations as a body force. The Oldroyd-B, FENE-CR and FENE-MCR models are employed to model the viscoelasticity. The viscoelastic model equations are solved fully coupled with the flow equations within the front-tracking framework. A fifth-order WENO scheme is used to approximate the convective terms in the viscoelastic model equations and second-order central differences are used for all other spatial derivatives. A log-conformation method is employed to alleviate the high Weissenberg number problem (HWNP) and found to be stable and very robust for a wide range of Weissenberg numbers. The method has been first validated for various benchmark single-phase and two-phase viscoelastic flow problems. Then it has been applied to study motion and deformation of viscoelastic two-phase systems in a pressure-driven flow through a capillary tube with a sudden contraction and expansion. The method has been demonstrated to be grid convergent with second-order spatial accuracy for all the cases considered in this paper.
  • Placeholder
    Publication
    A microstructure-sensitive model for simulating the impact response of a high-manganese austenitic steel
    (Asme, 2016) N/A; N/A; Department of Mechanical Engineering; Mirzajanzadeh, Morad; Canadinç, Demircan; PhD Student; Faculty Member; Department of Mechanical Engineering; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; College of Engineering; N/A; 23433
    Microstructurally informed macroscopic impact response of a high-manganese austenitic steel was modeled through incorporation of the viscoplastic self-consistent (VPSC) crystal plasticity model into the ANSYS LS-DYNA nonlinear explicit finite-element (FE) frame. Voce hardening flow rule, capable of modeling plastic anisotropy in microstructures, was utilized in the VPSC crystal plasticity model to predict the micromechanical response of the material, which was calibrated based on experimentally measured quasi-static uniaxial tensile deformation response and initially measured textures. Specifically, hiring calibrated Voce parameters in VPSC, a modified material response was predicted employing local velocity gradient tensors obtained from the initial FE analyses as a new boundary condition for loading state. The updated micromechanical response of the material was then integrated into the macroscale material model by calibrating the Johnson-Cook (JC) constitutive relationship and the corresponding damage parameters. Consequently, we demonstrate the role of geometrically necessary multi-axial stress state for proper modeling of the impact response of polycrystalline metals and validate the presented approach by experimentally and numerically analyzing the deformation response of the Hadfield steel (HS) under impact loading.
  • Placeholder
    Publication
    A novel approach for monitoring plastic flow localization during in-situ sem testing of small-scale samples
    (Springer, 2018) Niendorf, Thomas; Weidner, Anja; N/A; Department of Mechanical Engineering; Mirzajanzadeh, Morad; Canadinç, Demircan; PhD Student; Faculty Member; Department of Mechanical Engineering; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; College of Engineering; N/A; 23433
    A novel method is proposed for monitoring the plastic flow localization during in-situ scanning electron microscopy (SEM) testing of small-scale AISI 316 L stainless steel. Stress-strain behavior of the material was obtained using a hybrid numerical-experimental (HNE) approach. By repeatedly illustrating each pair of sequentially taken SEM surface images throughout the deformation history in alternating order in form of a video, location of the material points which are not moving during the deformation can be detected. At the initial stages of deformation these points are located on the geometrical symmetry line of the test sample, however; when uniform straining limit of the material is reached, the locations of the stationary material points reveal the plastic localization regions. The current results clearly prove the feasibility of the presented method in monitoring primary plastic localization events through in-situ SEM tensile testing.
  • Placeholder
    Publication
    A novel demand-actuated defrost approach based on the real-time thickness of frost for the energy conservation of a refrigerator
    (Elsevier Sci Ltd, 2021) N/A; N/A; N/A; Department of Mechanical Engineering; Malik, Anjum Naeem; Khan, Shaheryar Atta; Lazoğlu, İsmail; PhD Student; PhD Student; Faculty Member; Department of Mechanical Engineering; Manufacturing and Automation Research Center (MARC); Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 179391
    The typical domestic refrigerator employs a blind and periodic defrost strategy that leads to the clogging of the evaporator between the consecutive defrost cycles. The clogging of the evaporator causes a loss in performance which can be minimized using the demand defrost technique. The demand defrost systems proposed in the literature rely on the detection of frost as the defrost triggering criterion, rather than the real-time quantification of the thickness of frost. The initial frost layer improves the performance and therefore, the thickness of frost must be taken into consideration. Frost becomes detrimental only after it crosses a critical threshold. Defrosting the system at lower thicknesses may lead to frequent defrosting cycles which in turn increases the defrost energy. Therefore, the defrost triggering criterion must be selected tactfully to utilize the benefit of the initial frost layer along with the minimization of the defrost energy. In this article, a novel real-time thickness of the frost-based demand defrost technique is presented for a domestic refrigerator. A hybrid system comprised of a frost detection and defrosting modules is employed to quantify the thickness of frost in real-time and to defrost the evaporator using a 12 W heater. The effect of the thickness of the frost-based defrost threshold on the energy consumption of the refrigerator is evaluated. The defrost threshold of 6 mm yields the maximum energy conservation of 10% as compared to the default blind and periodic defrost strategy of the test refrigerator.
  • Placeholder
    Publication
    A novel hybrid frost detection and defrosting system for domestic refrigerators
    (Elsevier, 2020) N/A; N/A; N/A; Department of Mechanical Engineering; Malik, Anjum Naeem; Khan, Shaheryar Atta; Lazoğlu, İsmail; PhD Student; PhD Student; Faculty Member; Department of Mechanical Engineering; Manufacturing and Automation Research Center (MARC); Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 179391
    The frosting is a phenomenon most detrimental to the efficiency of refrigeration systems. The accumulation of frost blocks the airflow, deteriorating the cooling capacity and the coefficient of performance. The commercially available refrigeration systems use a blind and periodic defrosting cycle without any quantification of frost, which leads to lower efficiencies. Considering the new and tougher energy regulations in the refrigerators, nowadays increasing the efficiencies of the refrigerators becomes more critical. In this article, a new hybrid frost detection - defrosting system (HFDDS) is proposed that comprises of a novel photo-capacitive sensing technique and a dual-purpose additively manufacturable sensor and defrosting heater. The HFDDS can detect the formation of frost, measures the thickness of frost from 1.3 to 8 mm with a 5% margin of error, and triggers a defrosting response once a critical frost thickness is attained. The HFDDS is targeted to provide a defrosting on-demand instead of the inefficient blind and periodic defrosting cycles.