Researcher:
Karakadıoğlu, Gözde Usta

Loading...
Profile Picture
ORCID

Job Title

PhD Student

First Name

Gözde Usta

Last Name

Karakadıoğlu

Name

Name Variants

Karakadıoğlu, Gözde Usta

Email Address

Birth Date

Search Results

Now showing 1 - 3 of 3
  • Placeholder
    Publication
    Development of a new generation of imatinib using structural biology techniques at ambient temperature
    (Elsevier, 2022) N/A; N/A; Karakadıoğlu, Gözde Usta; PhD Student; Graduate School of Sciences and Engineering; N/A
    N/A
  • Thumbnail Image
    PublicationOpen Access
    Protocol for structure determination of SARS-CoV-2 main protease at near-physiological-temperature by serial femtosecond crystallography
    (Cell Press, 2022) Dao, E. Han; Su, Zhen; Poitevin, Frederic; Yoon, Chun Hong; Kupitz, Christopher; Hayes, Brandon; Liang, Mengning; Hunter, Mark S.; Batyuk, Alexander; Sierra, Raymond G.; Ketawala, Gihan; Botha, Sabine; Department of Molecular Biology and Genetics; Ertem, Fatma Betül; Güven, Ömür; Büyükdağ, Cengizhan; Göcenler, Oktay; Ayan, Esra; Yüksel, Büşra; Gül, Mehmet; Karakadıoğlu, Gözde Usta; Çakılkaya, Barış; Johnson, Jerome Austin; Demirci, Hasan; Dağ, Çağdaş; Undergraduate Student; PhD Student; Master Student; Faculty Member; Faculty Member; Faculty Member; Department of Molecular Biology and Genetics; Koç Üniversitesi İş Bankası Enfeksiyon Hastalıkları Uygulama ve Araştırma Merkezi (EHAM) / Koç University İşbank Center for Infectious Diseases (KU-IS CID); Graduate School of Sciences and Engineering; College of Sciences; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; 307350
    The SARS-CoV-2 main protease of (Mpro) is an important target for SARS-CoV-2 related drug repurposing and development studies. Here, we describe the steps for structural characterization of SARS-CoV-2 Mpro, starting from plasmid preparation and protein purification. We detail the steps for crystallization using the sitting drop, microbatch (under oil) approach. Finally, we cover data collection and structure determination using serial femtosecond crystallography.
  • Thumbnail Image
    PublicationOpen Access
    Case study of high-throughput drug screening and remote data collection for SARS-CoV-2 main protease by using serial femtosecond X-ray crystallography
    (Multidisciplinary Digital Publishing Institute (MDPI), 2021) Botha, Sabine; Ketawala, Gihan; Su, Zhen; Hayes, Brandon; Poitevin, Frederic; Batyuk, Alexander; Yoon, Chun Hong; Kupitz, Christopher; Durdağı, Serdar; Sierra, Raymond G.; Department of Molecular Biology and Genetics; Department of Chemical and Biological Engineering; Güven, Ömür; Gül, Mehmet; Ayan, Esra; Johnson, Jerome Austin; Çakılkaya, Barış; Karakadıoğlu, Gözde Usta; Ertem, Fatma Betül; Tokay, Nurettin; Yüksel, Büşra; Göcenler, Oktay; Büyükdağ, Cengizhan; Demirci, Hasan; PhD Student; Master Student; Undergraduate Student; Undergraduate Student; Faculty Member; Department of Molecular Biology and Genetics; Department of Chemical and Biological Engineering; Koç Üniversitesi İş Bankası Enfeksiyon Hastalıkları Uygulama ve Araştırma Merkezi (EHAM) / Koç University İşbank Center for Infectious Diseases (KU-IS CID); Graduate School of Sciences and Engineering; College of Sciences; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; 307350
    Since early 2020, COVID-19 has grown to affect the lives of billions globally. A worldwide investigation has been ongoing for characterizing the virus and also for finding an effective drug and developing vaccines. As time has been of the essence, a crucial part of this research has been drug repurposing; therefore, confirmation of in silico drug screening studies have been carried out for this purpose. Here we demonstrated the possibility of screening a variety of drugs efficiently by leveraging a high data collection rate of 120 images/second with the new low-noise, high dynamic range ePix10k2M Pixel Array Detector installed at the Macromolecular Femtosecond Crystallography (MFX) instrument at the Linac Coherent Light Source (LCLS). The X-ray Free-Electron Laser (XFEL) is used for remote high-throughput data collection for drug repurposing of the main protease (Mpro) of SARS-CoV-2 at ambient temperature with mitigated X-ray radiation damage. We obtained multiple structures soaked with nine drug candidate molecules in two crystal forms. Although our drug binding attempts failed, we successfully established a high-throughput Serial Femtosecond X-ray crystallographic (SFX) data collection protocol.