Researcher: Öztürk, Tuğba Nur
Name Variants
Öztürk, Tuğba Nur
Email Address
Birth Date
2 results
Search Results
Now showing 1 - 2 of 2
Publication Metadata only Computational screening of porous coordination networks for adsorption and membrane-based gas separations(Amer Chemical Soc, 2014) N/A; N/A; Department of Chemical and Biological Engineering; Öztürk, Tuğba Nur; Keskin, Seda; Master Student; Faculty Member; Department of Chemical and Biological Engineering; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Graduate School of Sciences and Engineering; College of Engineering; N/A; 40548Porous coordination networks (PCNs) are promising nanoporous materials in gas separation applications due to their tunable pore sizes, large surface areas, high porosities, and good thermal and mechanical stabilities. In this work, we investigated adsorption-based and membrane-based separation performances of 20 different PCNs for CH4/H-2, CO2/H-2, CO2/CH4, and CO2/N-2 mixtures using molecular simulations. Several PCNs were identified to show higher selectivity than traditional zeolites and polymers in membrane-based CO2 separations. We also developed simple models that can predict adsorption, diffusion, and permeation selectivities of PCNs for CH4/H-2 and CO2/H-2 mixtures based on the structural properties of materials such as pore volume, surface area, and pore diameter.Publication Metadata only Predicting gas separation performances of porous coordination networks using atomistic simulations(Amer Chemical Soc, 2013) N/A; N/A; Department of Chemical and Biological Engineering; Öztürk, Tuğba Nur; Keskin, Seda; Master Student; Faculty Member; Department of Chemical and Biological Engineering; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Graduate School of Sciences and Engineering; College of Engineering; N/A; 40548Porous coordination networks (PCNs) offer considerable potential for gas separation applications due to their tunable pore sizes, large surface areas, high pore volumes, and good thermal and mechanical stabilities. Although a large number of PCNs have been synthesized to date, the potential performance of PCNs for adsorption-based and/or membrane-based gas separation applications is not known. In this work, we used atomically detailed simulations to predict the performance of PCN materials both in adsorption-based and in membrane-based separations of CH4/H-2, CO2/CH4, CO2/H-2, and CO2/N-2 mixtures. After validating the accuracy of our atomic simulations by comparing simulated adsorption isotherms of CO2, CH4, H-2, and N-2 with the available experimental data, we predicted adsorption-based selectivity, working capacity, regenerability, sorbent selection parameter, diffusion-based selectivity, membrane-based selectivity, and gas permeability of various PCNs. Several PCNs were predicted to outperform traditional zeolites and widely studied metal organic frameworks in CO2 separation processes. PCN-26 was identified as a potential membrane material that can exceed the upper bound established for CO2/CH4 and CO2/N-2 separations due to its high CO2 permeability and selectivity.