Researcher: Işın, Şafak
Name Variants
Işın, Şafak
Email Address
Birth Date
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Discovery of a small molecule that selectively destabilizes Cryptochrome 1 and enhances life span in p53 knockout mice(Nature Portfolio, 2022) Akyel, Yasemin Kübra; Korkmaz, Tuba; Selvi, Saba; Danış, İbrahim; İpek, Özgecan Savluğ; Aygenli, Fatih; Öztürk, Nuri; Öztürk, Narin; Ünal, Durişehvar Özer; Güzel, Mustafa; Okyar, Alper; N/A; Department of Chemical and Biological Engineering; Department of Industrial Engineering; Department of Chemical and Biological Engineering; Department of Industrial Engineering; Gül, Şeref; Gül, Zeynep Melis; Işın, Şafak; Özcan, Onur; Akarlar, Büşra; Taşkın, Ali Cihan; Türkay, Metin; Kavaklı, İbrahim Halil; Researcher; Other; Faculty Member; Faculty Member; Faculty Member; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); College of Engineering; N/A; N/A; N/A; N/A; N/A; 291296; 105301; 24956; 40319Cryptochromes are negative transcriptional regulators of the circadian clock in mammals. It is not clear how reducing the level of endogenous CRY1 in mammals will affect circadian rhythm and the relation of such a decrease with apoptosis. Here, we discovered a molecule (M47) that destabilizes Cryptochrome 1 (CRY1) both in vitro and in vivo. The M47 selectively enhanced the degradation rate of CRY1 by increasing its ubiquitination and resulted in increasing the circadian period length of U2OS Bmal1-dLuc cells. In addition, subcellular fractionation studies from mice liver indicated that M47 increased degradation of the CRY1 in the nucleus. Furthermore, M47-mediated CRY1 reduction enhanced oxaliplatin-induced apoptosis in Ras-transformed p53 null fibroblast cells. Systemic repetitive administration of M47 increased the median lifespan of p53(-/-) mice by similar to 25%. Collectively our data suggest that M47 is a promising molecule to treat forms of cancer depending on the p53 mutation.Publication Open Access Structure-based design and classifications of small molecules regulating the circadian rhythm period(Nature Portfolio, 2021) Yılmaz, Fatma; Öztürk, Nuri; Department of Industrial Engineering; Department of Chemical and Biological Engineering; Department of Molecular Biology and Genetics; Department of Industrial Engineering; Department of Chemical and Biological Engineering; Department of Molecular Biology and Genetics; Türkay, Metin; Rahim, Fatih; Gül, Şeref; Kavaklı, İbrahim Halil; Işın, Şafak; Faculty Member; Researcher; Faculty Member; College of Engineering; Graduate School of Sciences and Engineering; 24956; N/A; N/A; 40319; N/ACircadian rhythm is an important mechanism that controls behavior and biochemical events based on 24 h rhythmicity. Ample evidence indicates disturbance of this mechanism is associated with different diseases such as cancer, mood disorders, and familial delayed phase sleep disorder. Therefore, drug discovery studies have been initiated using high throughput screening. Recently the crystal structures of core clock proteins (CLOCK/BMAL1, Cryptochromes (CRY), Periods), responsible for generating circadian rhythm, have been solved. Availability of structures makes amenable core clock proteins to design molecules regulating their activity by using in silico approaches. In addition to that, the implementation of classification features of molecules based on their toxicity and activity will improve the accuracy of the drug discovery process. Here, we identified 171 molecules that target functional domains of a core clock protein, CRY1, using structure-based drug design methods. We experimentally determined that 115 molecules were nontoxic, and 21 molecules significantly lengthened the period of circadian rhythm in U2OS cells. We then performed a machine learning study to classify these molecules for identifying features that make them toxic and lengthen the circadian period. Decision tree classifiers (DTC) identified 13 molecular descriptors, which predict the toxicity of molecules with a mean accuracy of 79.53% using tenfold cross-validation. Gradient boosting classifiers (XGBC) identified 10 molecular descriptors that predict and increase in the circadian period length with a mean accuracy of 86.56% with tenfold cross-validation. Our results suggested that these features can be used in QSAR studies to design novel nontoxic molecules that exhibit period lengthening activity.