Researcher: Gülbahar, Burhan
Name Variants
Gülbahar, Burhan
Email Address
Birth Date
7 results
Search Results
Now showing 1 - 7 of 7
Publication Metadata only Information theoretical optimization gains in energy adaptive data gathering and relaying in cognitive radio sensor networks(IEEE-Inst Electrical Electronics Engineers Inc, 2012) N/A; Department of Electrical and Electronics Engineering; Gülbahar, Burhan; Akan, Özgür Barış; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; 234525; 6647Cognitive radio (CR) technology helps mitigate wireless resource scarcity problem by dynamically changing frequency spectrum, power and modulation type. Opportunistic spectrum access increases the network capability and quality. Recently, CR applied to wireless sensor networks (WSNs) generated the paradigm of cognitive radio sensor networks (CRSNs) overcoming the challenges posed by event-driven traffic demands of WSNs. To realize advantages of CRSN, spectrum and power allocation, and routing must be jointly considered to maximize the information capacity, resource utilization and the lifetime. In this paper, power and rate adaptation problem is analyzed for a multi-hop CRSN in an information theoretical (IT) capacity maximization framework combined with energy adaptive (EA) mechanisms and utilization of sensor data information correlations (ICs). CRSN characteristics, i.e., fast data aggregation, bursty traffic and node failures, are considered. The capacity optimization problem is defined analytically and practical local schemes are presented showing the superiority of objective functions utilizing ICs and EA mechanisms in terms of the resulting maximum information rate at sink, i.e., R-max, lifetime, and energy utilization. Furthermore, dependence of performance on total bandwidth and various relay energy distributions is explored observing the logarithmic dependence of R-max on total bandwidth.Publication Metadata only Constant fidelity entanglement flow in quantum communication networks(Ieee, 2010) Department of Electrical and Electronics Engineering; N/A; Department of Electrical and Electronics Engineering; Bacınoğlu, Tan; Gülbahar, Burhan; Akan, Özgür Barış; N/A; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 234525; 6647Entanglement distribution over long distances is one of the main problems in the existing quantum communication networks. Most of the existing methods of establishing entanglement paired link (Einstein, Podolsky, Rosen - EPR pairs) between distant nodes assume symmetric network topologies comprised of links with identical EPR generation capacities. In this work, the entanglement rate capacity of randomly distributed quantum ad hoc networks is investigated. To this end, constant fidelity maximum flow (CFMF) of entanglement problem is defined, and its theoretical analysis is presented. A new heuristic algorithm, i.e., Entanglement Swapping Scheme Search (ESSS), is presented to find the best possible swapping scheme over a multi-hop entanglement path. Furthermore, Shortest Path Entanglement Flow (SPEF) algorithm is introduced as an effective heuristic solution for this problem. Analysis shows that there is a trade-off between the desired constant target fidelity and the entanglement generation rate (maximum flow) of the network.Publication Metadata only A communication theoretical modeling of single-layer graphene photodetectors and efficient multireceiver diversity combining(Ieee-Inst Electrical Electronics Engineers Inc, 2012) N/A; Department of Electrical and Electronics Engineering; Gülbahar, Burhan; Akan, Özgür Barış; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; 234525; 6647Graphene with groundbreaking properties has tremendous impact on physical sciences as 2-D atomic layer carbon sheet. Its unique electronic and photonic properties lead to applications such as transistors, graphene photodetectors (GPDs), and electronic circuit components. Metal-graphene-metal (MGM) GPDs with single-or multilayer graphene sheets are promising for future nanoscale optical communication architectures because of wide range absorption from far infrared to visible spectrum, fast carrier velocity, and advanced production techniques due to planar geometry. In this paper, signal-to-noise ratio (SNR), bit-error rate (BER), and data rate performances of nanoscale single-layer symmetric MGM photodetectors are analyzed for intensity modulation and direct detection (IM/DD) modulation. Shot and thermal noise limited (NL) performances are analyzed emphasizing graphene layer width dependence and domination of thermal NL characteristics for practical power levels. Tens of Gbit/s data rates are shown to be achievable with very low BERs for single-receiver (SR) GPDs. Furthermore, multireceiver (MR) GPDs and parallel line-scan (PLS) network topology are defined improving the efficiency of symmetric GPDs. SNR performance of SR PLS channels are both improved and homogenized with MR devices having the same total graphene area by optimizing their positions with maxmin solutions and using maximal ratio and equal gain diversity combining techniques.Publication Metadata only A communication theoretical modeling and analysis of underwater magneto-inductive wireless channels(Ieee-Inst Electrical Electronics Engineers Inc, 2012) N/A; Department of Electrical and Electronics Engineering; Gülbahar, Burhan; Akan, Özgür Barış; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; 234525; 6647Underwater physical medium is a challenging environment for communication using radio frequency (RF) or acoustic waves due to strong attenuation, delay, multi-path fading, power and cost limitations. Discovered a century ago, magneto-inductive (MI) communication technique stands as a strong alternative paradigm due to its independence of environmental impairments including multi-path fading, dynamic channels and high propagation delays experienced by acoustic waves. Furthermore, MI technique yields networking solutions exploiting low-cost, easily-deployable and flexible antenna structures, and the possibility of forming networks of magnetic waveguides defeating path loss. In this work, highly power efficient and fully connected underwater communication networks (UWCNs) composed of transceiver and relay induction coils are presented. Three dimensional (3D) UWCNs are analysed in terms of basic communication metrics, i.e, signal-to-noise ratio, bit-error rate, connectivity and communication bandwidth. The performance studies of realistic 3D networks covering hundreds of meters sea depths and a few km(2) areas show that fully connected multi-coil networks with communication bandwidths extending from a few to tens of KHz are possible. Furthermore, the performance dependence on coil properties and network size is theoretically modelled. Results show that MI wireless communication is a promising alternative for UWCNs and future research challenges are pointed out.Publication Metadata only A communication theoretical modeling of single-walled carbon nanotube optical nanoreceivers and broadcast power allocation(Ieee-Inst Electrical Electronics Engineers Inc, 2012) N/A; Department of Electrical and Electronics Engineering; Gülbahar, Burhan; Akan, Özgür Barış; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; 234525; 6647Carbon nanotube (CNT) with its ground-breaking properties is a promising candidate for future nanoscale communication networks. CNTs can be used as on-chip optical antenna for wireless interconnects. Carbon nanotube field-effect transistors (CNTFETs) show significant performance as photodetectors due to wide spectral region and tunable bandgap. In this paper, CNTFETs composed of semiconducting single-walled carbon nanotube (SWNT) and metal contacts (M-SWNT-M) are used as photodiode receivers in nanoscale optical communication by theoretically modeling diameter-dependent characteristics for shot-, dark-, and thermal-noise-limited cases. Bit error rate (BER), cutoff bit rate, and signal-to-noise ratio performance are analyzed for intensity modulation and direct detection modulation. The multireceiver CNT nanoscale network topology is presented for information broadcast and the minimum SNR is maximized solving NP-hard max-min power allocation problem with semidefinite programming relaxation and branch and bound framework. The significant performance improvement is observed compared with uniform power allocation. Derived model is compared with existing experiments and hundreds of Mb/s data rate is achievable with very low BERs. Furthermore, optimization gain is highest for thermal-noise-limited case while the shot-noise-limited case gives the highest data rate.Publication Metadata only Stochastic resonance in graphene bilayer optical nanoreceivers(Institute of Electrical and Electronics Engineers (IEEE), 2014) Department of Electrical and Electronics Engineering; N/A; N/A; Akan, Özgür Barış; Kocaoğlu, Murat; Gülbahar, Burhan; Faculty Member; PhD Student; PhD Student; Department of Electrical and Electronics Engineering; College of Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; 6647; N/A; 234525Graphene, a 2-D sheet of carbon atoms, is believed to have diverse application areas ranging from medicine to communications. A novel application is using graphene as a photodetector in optical communications due to its superior optical and electrical properties such as wide and tunable absorption frequency range and high electron mobility. Noise, which is especially significant in nanoscale communications, is mostly seen as an adversary. Stochastic resonance (SR) is the performance enhancement of a system due to incorporation of noise. It is shown that the excess noise in nanocommunications can be used to improve the performance of a graphene bilayer photodetector system with hard threshold decoder, when received signals are subthreshold. SR arises due to the nonlinear nature of the hard decoder. First, the SR effect due to the background ambient noise and intentional light noise is analyzed. An approximate inverse signal-to-noise ratio expression is derived, which maximizes the mutual information. The effect of frequency on the mutual information is also investigated, and it is shown that the higher frequencies are more preferable for noise limited regimes. Later, the case with the intentional noise added to the top gate is investigated. It is shown that significant mutual information improvements are achieved for subthreshold signals, due to the multiplicative stochastic terms arising from the nonlinear graphene bilayer characteristics, i.e., the exponential dependence of photocurrent on the gate voltages. All the analytical results are verified with extensive simulations.Publication Open Access Constant fidelity entanglement flow in quantum communication networks(Institute of Electrical and Electronics Engineers (IEEE), 2010) Bacınoğlu, Tan; Gülbahar, Burhan; Akan, Özgür Barış; Faculty Member; College of EngineeringEntanglement distribution over long distances is one of the main problems in the existing quantum communication networks. Most of the existing methods of establishing entanglement paired link (Einstein, Podolsky, Rosen - EPR pairs) between distant nodes assume symmetric network topologies comprised of links with identical EPR generation capacities. In this work, the entanglement rate capacity of randomly distributed quantum ad hoc networks is investigated. To this end, constant fidelity maximum flow (CFMF) of entanglement problem is defined, and its theoretical analysis is presented. A new heuristic algorithm, i.e., Entanglement Swapping Scheme Search (ESSS), is presented to find the best possible swapping scheme over a multi-hop entanglement path. Furthermore, Shortest Path Entanglement Flow (SPEF) algorithm is introduced as an effective heuristic solution for this problem. Analysis shows that there is a trade-off between the desired constant target fidelity and the entanglement generation rate (maximum flow) of the network.