Researcher: Sadıç, Ayberk
Name Variants
Sadıç, Ayberk
Email Address
Birth Date
3 results
Search Results
Now showing 1 - 3 of 3
Publication Metadata only Exploration strategies for tactile graphics displayed by electrovibration on a touchscreen(Academic Press Ltd- Elsevier Science Ltd, 2022) Ayyıldız, Mehmet; N/A; Department of Mechanical Engineering; Sadia, Büshra; Sadıç, Ayberk; Başdoğan, Çağatay; PhD Student; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 125489Advancements in surface haptics technology have given rise to the development of interactive applications displaying tactile content on touch surfaces such as images, signs, diagrams, plots, charts, graphs, maps, net-works, and tables. In those applications, users manually explore the touch surface to interact with the tactile data using some intuitive strategies. The user's exploration strategy, tactile data's complexity, and tactile rendering method all affect the user's haptic perception, which plays a critical role in designing and prototyping of those applications. In this study, we conducted experiments with human participants to investigate the recognition rate and time of five tactile shapes (i.e., triangle, square, pentagon, hexagon, and octagon) rendered by electro-vibration on a touchscreen using three different methods (electrovibration was active inside, on the edges, or outside the shapes), and displayed in prototypical orientations and non-prototypical orientations (i.e., 15 degrees CW and CCW to the prototypical orientation). The results showed that the correct recognition rate of the shapes was higher when the haptically active area (area where electrovibration was on) was larger. However, as the number of edges was increased, the recognition time increased and the recognition rate dropped significantly, arriving to a value slightly higher than the chance rate of 20% for non-prototypical octagon. Moreover, the recognition time for inside rendering condition was significantly shorter compared to edge and outside rendering conditions, and edge rendering condition led to the longest recognition time. We also recorded the participants' finger movements on the touchscreen to examine their haptic exploration strategies. Based on our temporal analysis, we classified six exploration strategies adopted by participants to identify the shapes, which were different for the prototypical and non-prototypical shapes. Moreover, our spatial analysis revealed that the participants first used global scanning to extract the coarse features of the displayed shapes, and then they applied local scanning to identify finer details, but needed another global scan for final confirmation in the case of non-prototypical shapes, possibly due to the current limitations of electrovibration technology in displaying tactile stimuli to a user. We observed that it was highly difficult to follow the edges of shapes and recognize shapes with more than five edges under electrovibration when a single finger was used for exploration.Publication Metadata only Dokunmatik ekranlarda elekto-titreşim vasıtasıyla 2B eşkenar geometrik şekillerin dokunsal algılanışı(IEEE, 2017) Ayyıldız, Mehmet; N/A; Department of Mechanical Engineering; Sadıç, Ayberk; Başdoğan, Çağatay; Researcher; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 125489Haptic feedback is a potential technology to convey spatial, graphical, or pictorial information to visually impaired people that is difficult to be transmitted verbally. In this study, we investigated the effects of edge number (N) and rendering technique on haptic recognition of two-dimensional (2D) equilateral geometric shapes displayed by electrovibration on touch screens. We conducted experiments with 9 subjects using 5 shapes (triangle, square, pentagon, hexagon, and octagon) under 3 different experimental conditions; 1) electrovibration was displayed inside the shapes (INSIDE condition), 2) on their edges (EDGE condition), and 3) at the outside of the shapes (OUTSIDE condition). We observed that haptic recognition accuracy of the subjects decreased as the number of edges was increased from N=3 (triangle) to N=6 (hexagon). Surprisingly, the recognition accuracy for the octagon (N=8) was significantly higher than that of the hexagon. The results also showed that there was no significant difference in rendering techniques in terms of the recognition rates, but displaying electrovibration inside the shapes (INSIDE condition) led to the shortest duration of haptic recognition. / Dokunsal geri bildirim, görme engellilere sözlü olarak iletilmesi zor olan mekânsal, grafiksel veya resimsel bilgilerin aktarımı için kullanılabilecek potansiyel bir iletişim kanalıdır. Bu çalışmamızda elektrostatik indüksiyon yardımıyla dokunsal geri bildirim sağlayan dokunmatik ekranlarda iki boyutlu (2B) eşkenar geometrik şekillerin kenar sayısının (N) ve görselleştirme tekniğinin dokunsal tanıma üzerindeki etkilerini araştırdık. Üç farklı deneysel koşul altında, 1) şekillerin içine (İÇ koşulu), 2) şekillerin kenarlarına (KENAR koşulu) ve 3) şekillerin dışına (DIŞ koşulu) elektro-titreşim uyaranları vererek dokuz deneğe beş farklı geometrik şekil (üçgen, kare, beşgen, altıgen ve sekizgen) gösterdik. Şekillerin kenar sayısı N = 3’ten (üçgen), N = 6’ya (altıgen) arttıkça, deneklerin dokunsal tanıma doğruluğunun azaldığını gözlemledik. Şaşırtıcı bir şekilde, sekizgen (N = 8) için tanıma doğruluğunun altıgeninkinden anlamlı derecede yüksek olduğunu gördük. Ayrıca elde edilen sonuçlar, dokunsal tanıma oranları bakımından görselleştirme teknikleri arasında anlamlı bir farklılığın olmadığını, fakat elektro-titreşim uyaranlarının şekillerin içerisinde verilmesinin (İÇ koşulu), dokunsal tanıma süresini azalttığını gördük.Publication Metadata only Haptic perception of 2D equilateral geometric shapes via electrovibration on touch screen(Institute of Electrical and Electronics Engineers (IEEE), 2018) Ayyıldız, Mehmet; N/A; Department of Mechanical Engineering; Sadıç, Ayberk; Başdoğan, Çağatay; Researcher; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 125489Haptic feedback is a potential technology to convey spatial, graphical, or pictorial information to visually impaired people that is difficult to be transmitted verbally. In this study, we investigated the effects of edge number (N) and rendering technique on haptic recognition of two-dimensional (2D) equilateral geometric shapes displayed by electrovibration on touch screens. We conducted experiments with 9 subjects using 5 shapes (triangle, square, pentagon, hexagon, and octagon) under 3 different experimental conditions; 1) electrovibration was displayed inside the shapes (INSIDE condition), 2) on their edges (EDGE condition), and 3) at the outside of the shapes (OUTSIDE condition). We observed that haptic recognition accuracy of the subjects decreased as the number of edges was increased from N=3 (triangle) to N=6 (hexagon). Surprisingly, the recognition accuracy for the octagon (N=8) was significantly higher than that of the hexagon. The results also showed that there was no significant difference in rendering techniques in terms of the recognition rates, but displaying electrovibration inside the shapes (INSIDE condition) led to the shortest duration of haptic recognition. / Dokunsal geri bildirim, görme engellilere sözlü olarak iletilmesi zor olan mekânsal, grafiksel veya resimsel bilgilerin aktarımı için kullanılabilecek potansiyel bir iletişim kanalıdır. Bu çalışmamızda elektrostatik indüksiyon yardımıyla dokunsal geri bildirim sağlayan dokunmatik ekranlarda iki boyutlu (2B) eşkenar geometrik şekillerin kenar sayısının (N) ve görselleştirme tekniğinin dokunsal tanıma üzerindeki etkilerini araştırdık. Üç farklı deneysel koşul altında, 1) şekillerin içine (İÇ koşulu), 2) şekillerin kenarlarına (KENAR koşulu) ve 3) şekillerin dışına (DIŞ koşulu) elektro-titreşim uyaranları vererek dokuz deneğe beş farklı geometrik şekil (üçgen, kare, beşgen, altıgen ve sekizgen) gösterdik. Şekillerin kenar sayısı N = 3’ten (üçgen), N = 6’ya (altıgen) arttıkça, deneklerin dokunsal tanıma doğruluğunun azaldığını gözlemledik. Şaşırtıcı bir şekilde, sekizgen (N = 8) için tanıma doğruluğunun altıgeninkinden anlamlı derecede yüksek olduğunu gördük. Ayrıca elde edilen sonuçlar, dokunsal tanıma oranları bakımından görselleştirme teknikleri arasında anlamlı bir farklılığın olmadığını, fakat elektro-titreşim uyaranlarının şekillerin içerisinde verilmesinin (İÇ koşulu), dokunsal tanıma süresini azalttığını gördük.