Researcher: Gürdal, Yeliz
Name Variants
Gürdal, Yeliz
Email Address
Birth Date
3 results
Search Results
Now showing 1 - 3 of 3
Publication Metadata only Predicting noble gas separation performance of metal organic frameworks using theoretical correlations(Amer Chemical Soc, 2013) N/A; Department of Chemical and Biological Engineering; Gürdal, Yeliz; Keskin, Seda; Master Student; Faculty Member; Department of Chemical and Biological Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 40548In this work, we examined the accuracy of theoretical correlations that predict the performance of metal organic frameworks (MOFs) in separation of noble gas mixtures using only the single-component adsorption and diffusion data. Single component adsorption isotherms and self-diffusivities of Xe, Kr, and Ar in several MOFs were computed by grand canonical Monte Carlo and equilibrium molecular dynamics simulations. These pure component data were then used to apply Ideal Adsorbed Solution Theory (IAST) and Krishna-Paschek (KP) correlation for estimating the adsorption isotherms and self-diffusivities of Xe/Kr and Xe/Ar mixtures at various compositions in several representative MOFs. Separation properties of MOFs such as adsorption selectivity, working capacity, diffusion selectivity, permeation selectivity, and gas permeability were evaluated using the predictions of theoretical correlations and compared with the data obtained from computationally demanding molecular simulations. Results showed that theoretical correlations that predict mixture properties based on single-component data make accurate estimates for the separation performance of many MOFs which will be very useful for materials screening purposes.Publication Metadata only A new approach for predicting gas separation performances of MOF membranes(Elsevier Science Bv, 2016) N/A; Department of Chemical and Biological Engineering; Gürdal, Yeliz; Keskin, Seda; Master Student; Faculty Member; Department of Chemical and Biological Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 40548Metal organic framework (MOF) membranes are widely used for gas separations. Permeability and selectivity of MOF membranes can be accurately calculated using 'the detailed method' which computes transport diffusivities of gases in MOFs' pores. However, this method is computationally demanding therefore not suitable to screen large numbers of MOFs. Another approach is to use the approximate method' which uses self-diffusivities of gases to predict gas permeabilities of MOF membranes. The approximate method requires fewer amounts of time compared to the detailed method but significantly underestimates gas permeabilities since mixture correlation effects are ignored in this method. In this work, we first used computationally demanding detailed method to calculate permeabilities and selectivities of 8 different MOF membranes for Xe/Kr and Xe/Ar separations. We then compared these results with the predictions of the approximate method. After observing significant underestimation of the gas permeabilities by the approximate method, we proposed a new computational method to accurately predict gas separation properties of MOF membranes. This new method requires the same computational time and resources with the approximate method but makes much more accurate predictions for gas permeabilities. The new method that we proposed in this work will be very useful for large-scale screening of MOFs to identify the most promising membrane materials prior to extensive computational calculations and experimental efforts. (C) 2016 Elsevier B.V. All rights reserved.Publication Metadata only Atomically detailed modeling of metal organic frameworks for adsorption, diffusion, and separation of noble gas mixtures(Amer Chemical Soc, 2012) N/A; Department of Chemical and Biological Engineering; Gürdal, Yeliz; Keskin, Seda; Master Student; Faculty Member; Department of Chemical and Biological Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 40548Atomically detailed simulations have been widely used to assess gas storage and gas separation properties of metal organic frameworks (MOFs). We used molecular simulations to examine adsorption, diffusion, and separation of noble gas mixtures in MOFs. Adsorption isotherms and self-diffusivities of Xe/Kr and Xe/Ar mixtures at various compositions in ten representative MOFs were computed using grand canonical Monte Carlo and equilibrium molecular dynamics simulations. Several properties of MOFs such as adsorption selectivity, working capacity, diffusion selectivity, permeation selectivity, and gas permeability were evaluated and compared with those of traditional nanoporous materials. Results showed that MOFs are promising candidates for Xe/Kr and Xe/Ar separations due to their high Xe selectivity and permeability.