Researcher: Siddiqui, Hummaira Banu
Name Variants
Siddiqui, Hummaira Banu
Email Address
Birth Date
2 results
Search Results
Now showing 1 - 2 of 2
Publication Metadata only Embryonic aortic arch material properties obtained by optical coherence tomography-guided micropipette aspiration(Elsevier Ltd, 2023) Çoban, Gürşan; Yap, Choon Hwai; Department of Mechanical Engineering; N/A; Department of Mechanical Engineering; Lashkarinia, Seyedeh Samaneh; Siddiqui, Hummaira Banu; Pekkan, Kerem; Researcher; PhD Student; Faculty Member; Department of Mechanical Engineering; College of Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 161845It is challenging to determine the in vivo material properties of a very soft, mesoscale arterial vesselsof size ∼ 80 to 120 μm diameter. This information is essential to understand the early embryonic cardiovascular development featuring rapidly evolving dynamic microstructure. Previous research efforts to describe the properties of the embryonic great vessels are very limited. Our objective is to measure the local material properties of pharyngeal aortic arch tissue of the chick-embryo during the early Hamburger-Hamilton (HH) stages, HH18 and HH24. Integrating the micropipette aspiration technique with optical coherence tomography (OCT) imaging, a clear vision of the aspirated arch geometry is achieved for an inner pipette radius of Rp = 25 μm. The aspiration of this region is performed through a calibrated negatively pressurized micro-pipette. A computational finite element model is developed to model the nonlinear behaviour of the arch structure by considering the geometry-dependent constraints. Numerical estimations of the nonlinear material parameters for aortic arch samples are presented. The exponential material nonlinearity parameter (a) of aortic arch tissue increases statistically significantly from a = 0.068 ± 0.013 at HH18 to a = 0.260 ± 0.014 at HH24 (p = 0.0286). As such, the aspirated tissue length decreases from 53 μm at HH18 to 34 μm at HH24. The calculated NeoHookean shear modulus increases from 51 Pa at HH18 to 93 Pa at HH24 which indicates a statistically significant stiffness increase. These changes are due to the dynamic changes of collagen and elastin content in the media layer of the vessel during development.Publication Open Access Soft-tissue material properties and mechanogenetics during cardiovascular development(Multidisciplinary Digital Publishing Institute (MDPI), 2022) Department of Mechanical Engineering; Pekkan, Kerem; Siddiqui, Hummaira Banu; TRUE, Sedat; Lashkarinia, Seyedeh Samaneh; Faculty Member; Master Student; Researcher; Department of Mechanical Engineering; College of Engineering; Graduate School of Social Sciences and Humanities; 161845; N/A; N/A; N/ADuring embryonic development, changes in the cardiovascular microstructure and material properties are essential for an integrated biomechanical understanding. This knowledge also enables realistic predictive computational tools, specifically targeting the formation of congenital heart defects. Material characterization of cardiovascular embryonic tissue at consequent embryonic stages is critical to understand growth, remodeling, and hemodynamic functions. Two biomechanical loading modes, which are wall shear stress and blood pressure, are associated with distinct molecular pathways and govern vascular morphology through microstructural remodeling. Dynamic embryonic tissues have complex signaling networks integrated with mechanical factors such as stress, strain, and stiffness. While the multiscale interplay between the mechanical loading modes and microstructural changes has been studied in animal models, mechanical characterization of early embryonic cardiovascular tissue is challenging due to the miniature sample sizes and active/passive vascular components. Accordingly, this comparative review focuses on the embryonic material characterization of developing cardiovascular systems and attempts to classify it for different species and embryonic timepoints. Key cardiovascular components including the great vessels, ventricles, heart valves, and the umbilical cord arteries are covered. A state-of-the-art review of experimental techniques for embryonic material characterization is provided along with the two novel methods developed to measure the residual and von Mises stress distributions in avian embryonic vessels noninvasively, for the first time in the literature. As attempted in this review, the compilation of embryonic mechanical properties will also contribute to our understanding of the mature cardiovascular system and possibly lead to new microstructural and genetic interventions to correct abnormal development.