Researcher:
Arslan, Büşra

Loading...
Profile Picture
ORCID

Job Title

Master Student

First Name

Büşra

Last Name

Arslan

Name

Name Variants

Arslan, Büşra

Email Address

Birth Date

Search Results

Now showing 1 - 1 of 1
  • Placeholder
    Publication
    A leucine aminopeptidase activatable photosensitizer for cancer cell selective photodynamic therapy action
    (Elsevier Sci Ltd, 2021) N/A; N/A; N/A; Department of Chemistry; N/A; Department of Physics; Department of Chemistry; Department of Chemistry; Department of Physics; Department of Chemistry; Arslan, Büşra; Bilici, Kübra; Demirci, Gözde; Almammadov, Toghrul; Khan, Minahil; Sennaroğlu, Alphan; Acar, Havva Funda Yağcı; Kölemen, Safacan; Master Student; PhD Student; Master Student; Researcher; PhD Student; Faculty Member; Faculty Member; Faculty Member; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Koç University Boron and Advanced Materials Application and Research Center (KUBAM) / Koç Üniversitesi Bor ve İleri Malzemeler Uygulama ve Araştırma Merkezi (KUBAM); Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Sciences; Graduate School of Sciences and Engineering; College of Sciences; College of Sciences; College of Sciences; N/A; N/A; N/A; N/A; N/A; 23851; 178902; 272051
    Activity based photosensitizers (PS) continue to attract great attention as they enable selective photodynamic therapy action on cancer cells while sparing normal cells even under light irradiation. Sensitivity to specific enzymes that are differentially overexpressed in cancer cells is crucial in the design of activatable PSs. In this direction, we report here, for the first time, a leucine aminopeptidase (LAP) activatable PDT agent (HCL), which is a red-shifted, water soluble and photostable brominated hemicyanine derivative. HCL was activated by endogenous LAP enzyme selectively in A549 (lung) and HCT116 (colon) cancer cells containing high LAP levels and induced effective photocytotoxicity with negligible dark toxicity. Furthermore, the fluorescence of the parent bromo-hemicyanine core was restored upon LAP-based activation in cancer cells. On the other side, no remarkable phototoxicity or fluorescence turn-on was detected in healthy L929 cells. Thus, HCL serves as an effective and tumour associated LAP-sensitive phototheranostic agent. We believe different cancer-associated analytes can be utilized in combination with near-IR absorbing scaffolds in the scope of activatable PDT designs to enrich the tumour-selective PS arsenal.