Researcher:
Yıldırım, Cansu

Loading...
Profile Picture
ORCID

Job Title

Master Student

First Name

Cansu

Last Name

Yıldırım

Name

Name Variants

Yıldırım, Cansu

Email Address

Birth Date

Search Results

Now showing 1 - 5 of 5
  • Placeholder
    Publication
    TiO2–Al2O3 binary mixed oxide surfaces for photocatalytic NOx abatement
    (Elsevier Science Bv, 2014) Soylu, Asli Melike; Polat, Meryem; Erdogan, Deniz Altunoz; Say, Zafer; Ozensoy, Emrah; N/A; Yıldırım, Cansu; Birer, Özgür; Master Student; Researcher; Graduate School of Sciences and Engineering; N/A
    TiO2-Al2O3 binary oxide surfaces were utilized in order to develop an alternative photocatalytic NOx abatement approach, where TiO2 sites were used for ambient photocatalytic oxidation of NO with O-2 and alumina sites were exploited for NOx storage. Chemical, crystallographic and electronic structure of the TiO2-Al2O3 binary oxide surfaces were characterized (via BET surface area measurements, XRD, Raman spectroscopy and DR-UV-Vis Spectroscopy) as a function of the TiO2 loading in the mixture as well as the calcination temperature used in the synthesis protocol. 0.5 Ti/Al-900 photocatalyst showed remarkable photocatalytic NOx oxidation and storage performance, which was found to be much superior to that of a Degussa P25 industrial benchmark photocatalyst (i.e. 160% higher NOx storage and 55% lower NO2(g) release to the atmosphere). Our results indicate that the onset of the photocatalytic NOx abatement activity is concomitant to the switch between amorphous to a crystalline phase with an electronic band gap within 3.05-3.10 eV; where the most active photocatalyst revealed predominantly rutile phase together and anatase as the minority phase.
  • Placeholder
    Publication
    Ultraviolet upconversion spectra of sonochemically synthesized doped NaYF4 crystals
    (Elsevier, 2014) N/A; Department of Chemistry; Yıldırım, Cansu; Birer, Özgür; Master Student; Researcher; Department of Chemistry; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); N/A; College of Sciences
    A facile sonochemical method was developed for the production of alpha- and beta-forms of Yb3+(20%)/Tm3+(2%) or Er3+(2%) doubly doped NaYF4 crystals. The reactions took place in aqueous solutions at low temperatures and employed oxide or salt precursors. Micrometer sized beta-NaYF4 and nanometer sized alpha-NaYF4 were obtained with upconversion property. The required activation energy for the solid-solid phase transition was overcome with the energy provided by cavitations. Upconversion emission properties of the Yb3+(20%), Er3+(2%) or Tm3+(2%) doubly doped, alpha- and beta-NaYF4 were investigated. The alpha-form with emission in the ultraviolet region had higher efficiency contradicting the literature. Several new peaks in the spectra, most likely due to crystal defects, were temporarily assigned.
  • Placeholder
    Publication
    “Smart poisoning” of Co/SiO2 catalysts by sulfidation for chirality-selective synthesis of (9,8) single-walled carbon nanotubes
    (2016) Yuan, Yang; Karahan, H. Enis; Wei, Li; Zhai, Shengli; Lau, Raymond; Chen, Yuan; N/A; Yıldırım, Cansu; Birer, Özgür; Master Student; Researcher; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); N/A; N/A; N/A
    The chirality-selective synthesis of relatively large (diameter > 1 nm) single-walled carbon nanotubes (SWCNTs) is of great interest for a variety of practical applications, but only a few catalysts are available so far. Previous studies suggested that S (compounds) can enhance the chirality-selectivity of Co catalysts in SWCNT synthesis, however, the mechanism behind is not fully understood, and no tailorable methodology has yet been developed. Here, we demonstrate a facile approach to achieve the chirality-selective synthesis of SWCNTs by the sulfidation-based poisoning of silica-supported Co catalysts using a mixture of H2S and H2. The UV-vis-NIR, photoluminescence, and Raman spectroscopy results together show that the resulting SWCNTs have a narrow diameter distribution of around 1.2 nm, and (9,8) nanotubes have an abundance of ∼38% among the semiconducting species. More importantly, the carbon yield achieved by the sulfided catalyst (2.5 wt%) is similar to that of the nonsulfided one (2.7 wt%). The characterization of the catalysts by X-ray diffraction, X-ray photoelectron spectroscopy, X-ray fluorescence, and H2 temperature-programmed reduction shows that the sulfidation leads to the formation of Co9S8 nanoparticles. However, Co9S8 nanoparticles are reduced back to regenerate metallic Co nanoparticles during the synthesis of SWCNTs, which maintain a high carbon yield. In this process, Co9S8 nanoparticles seemingly intermediate the production of Co nanoparticles with narrow size distribution. Due to the fact that the poisoning step improves the quality of the end-product rather than hampering the growth process, we have coined the process developed as “smart poisoning”. This study not only reveals the mechanism behind the beneficial role of S in the selective synthesis of relatively large SWCNTs but also presents a promising method to create chirality-selective catalysts with high activity for scalable synthesis.
  • Placeholder
    Publication
    Shadow-casted ultrathin surface coatings of titanium and titanium/silicon oxide sol particles via ultrasound-assisted deposition
    (Elsevier, 2016) N/A; N/A; N/A; N/A; N/A; Karahan, Hüseyin Enis; Birer, Özgür; Karakuş, Kerem; Yıldırım, Cansu; PhD Student; Researcher; PhD Student; Master Student; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; N/A; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; N/A; N/A; N/A; N/A
    Ultrasound-assisted deposition (USAD) of sol nanoparticles enables the formation of uniform and inherently stable thin films. However, the technique still suffers in coating hard substrates and the use of fast-reacting sol-gel precursors still remains challenging. Here, we report on the deposition of ultra thin titanium and titanium/silicon hybrid oxide coatings using hydroxylated silicon wafers as a model hard substrate. We use acetic acid as the catalyst which also suppresses the reactivity of titanium tetraisopropoxide while increasing the reactivity of tetraethyl orthosilicate through chemical modifications. Taking the advantage of this peculiar behavior, we successfully prepared titanium and titanium/silicon hybrid oxide coatings by USAD. Varying the amount of acetic acid in the reaction media, we managed to modulate thickness and surface roughness of the coatings in nanoscale. Field-emission scanning electron microscopy and atomic force microscopy studies showed the formation of conformal coatings having nanoroughness. Quantitative chemical state maps obtained by x-ray photoelectron spectroscopy (XPS) suggested the formation of ultrathin (<10 nm) coatings and thickness measurements by rotating analyzer ellipsometry supported this observation. For the first time, XPS chemical maps revealed the transport effect of ultrasonic waves since coatings were directly cast on rectangular substrates as circular shadows of the horn with clear thickness gradient from the center to the edges. In addition to the progress made in coating hard substrates, employing fast-reacting precursors and achieving hybrid coatings; this report provides the first visual evidence on previously suggested "acceleration and smashing" mechanism as the main driving force of USAD.
  • Thumbnail Image
    PublicationOpen Access
    A critical approach to the biocompatibility testing of NiTi orthodontic archwires
    (Vibgyor Online Publishers, 2016) Şahbazoğlu, D.; Toker, S. M.; Saher, D.; Department of Mechanical Engineering; Canadinç, Demircan; Gümüş, Berkay; Uzer, Benay; Yıldırım, Cansu; Polat-Altıntaş, Sevgi; Faculty Member; Department of Mechanical Engineering; College of Engineering; 23433; N/A; N/A; N/A; N/A
    The biocompatibility of Nickel-Titanium (NiTi) archwires was investigated by simulating actual contact state of archwires around brackets, which enabled incorporation of realistic mechanical conditions into ex situ experiments. Specifically, archwires (undeformed, and bound to brackets on acrylic dental molds) were statically immersed in artificial saliva (AS) for 31 days. Following the immersion, the archwires and the immersion solutions were analyzed with the aid of variouselectron-optical techniques, and it was observed that carbon-rich corrosion products formed on both archwire sets upon immersion. The corrosion products preferentially formed at the archwire–bracket contact zones, which is promoted by the high energy of these regions and the micro-cracks brought about by stress assisted corrosion. Moreover, it is suggested that these corrosion products prevented significant Ni or Ti ion release by blocking the micro-cracks, which, otherwise, would have led to enhanced ion release during immersion. The current findings demonstrate the need for incorporating both realistic chemical and mechanical conditions into the ex situ biocompatibility experiments of orthodontic archwires, including the archwire-bracket contact.