Researcher:
Lüleç, Sevil Zeynep

Loading...
Profile Picture
ORCID

Job Title

Researcher

First Name

Sevil Zeynep

Last Name

Lüleç

Name

Name Variants

Lüleç, Sevil Zeynep

Email Address

Birth Date

Search Results

Now showing 1 - 5 of 5
  • Placeholder
    Publication
    Design and characterization of micromachined sensor array integrated with CMOS based optical readout
    (Elsevier Science Sa, 2014) Temiz, Yüksel; Leblebici, Yusuf; Torun, Hamdi; N/A; N/A; N/A; Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; Erarslan, Refik Burak; Adiyan, Ulaş; Lüleç, Sevil Zeynep; Ölçer, Selim; Ürey, Hakan; Other; PhD Student; Master Student; Other; Faculty Member; Department of Electrical and Electronics Engineering; N/A; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; N/A; N/A; N/A; N/A; 8579
    This paper reports a micro electro-mechanical system (MEMS) based sensor array integrated with CMOSbased optical readout. The integrated architecture has several unique features. MEMS devices are passive and there are no electrical connections to the MEMS sensor array. Thus, the architecture is scalable to large array formats for parallel measurement applications and can even be made as a disposable cartridge in the future using self-aligning features. A CMOS-based readout integrated circuit (ROIC) is integrated to the MEMS chip. Via holes are defined on ROIC by customized post-processing and MEMS chip is thinned down by a grinding process to enable integrated optical readout. A diffraction grating interferometerbased optical readout is realized by pixel-level illumination of the MEMS chip through the via holes and by capturing the reflected light using a photodetector array on the CMOS chip. A model for the optical readout principle has been developed using Fourier optics. (C) 2013 Elsevier B.V. All rights reserved.
  • Placeholder
    Publication
    Mems cantilever sensor array oscillators: theory and experiments
    (Elsevier Science Sa, 2016) Yaralıoğlu, Gökşen G.; Leblebici, Yusuf; N/A; N/A; Department of Electrical and Electronics Engineering; Lüleç, Sevil Zeynep; Adiyan, Ulaş; Ürey, Hakan; Researcher; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; N/A; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 8579
    This paper demonstrates that an array of cantilever sensors can be operated simultaneously at resonance using a single actuator and a single photodetector. Self-sustained oscillations (SSOs) of cantilevers can be achieved in a feed-back loop using gain saturation mechanism in the electronics. Multiple cantilevers require separate saturation mechanisms and separate sensing electronics for each channel. We introduced optical non-linearity using diffraction gratings at the tip of each cantilever which provide separate saturation non-linearity, enabling a single detector based oscillator array. Two-cantilever SSO operation is investigated analytically, and the multiple frequency oscillation criteria are established. Cross-coupling between the oscillation frequencies has been investigated by using this multi cantilever model. The proposed model will be helpful to design dynamic-mode MEMS (Micro-electro-mechanical systems) cantilever sensor arrays with the desired functionality and cross-talk levels. This multiple SSO operation can be used in conjunction with dense cantilever arrays for various biosensor applications. Moreover, the model can also be useful to understand the operation of any kind of multiple simultaneous oscillator systems, which employs a single feed-back loop. We also present experimental results that confirm our model.
  • Placeholder
    Publication
    MEMS sensor array platform integrated with CMOS based optical readout
    (Institute of Electrical and Electronics Engineers (IEEE), 2013) Temiz, Yuksel; Leblebici, Yusuf; Torun, Hamdi; N/A; N/A; N/A; Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; Erarslan, Refik Burak; Lüleç, Sevil Zeynep; Adiyan, Ulaş; Ölçer, Selim; Ürey, Hakan; Other; Master Srudent; PhD Student; Other; Faculty Member; Department of Electrical and Electronics Engineering; N/A; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; N/A; N/A; N/A; N/A; 8579
    This paper reports a micro electro-mechanical system (MEMS) based sensor array integrated with CMOS-based optical readout. The integrated architecture has several unique features and reported here for the first time. MEMS devices are passive and there are no electrical connections to the MEMS sensor array. Thus the architecture is scalable to large array formats for parallel measurement applications and can even be made as a disposable cartridge in the future using self-aligning features. A CMOS-based readout integrated circuit (ROIC) is integrated to the MEMS chip. Via holes are defined on ROIC by customized post-processing to enable integrated optical readout. A diffraction grating interferometer-based optical readout is realized by pixel-level illumination of the MEMS chip through the via holes and by capturing the reflected light using a photodetector array on the CMOS chip.
  • Placeholder
    Publication
    Cantilever array oscillators with nonlinear optical readout
    (IEEE, 2015) Yaralıoğlu, Gökşen G.; Leblebici, Yusuf; N/A; N/A; Department of Electrical and Electronics Engineering; Lüleç, Sevil Zeynep; Adiyan, Ulaş; Ürey, Hakan; Researcher; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; N/A; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 8579
    MEMS array oscillators typically require a separate detector and feedback loop for each oscillator. We show that grating-based-optical-readout induces nonlinearity, which enables simultaneous operation of an array-of-oscillators using only one detector and single electronic feedback-loop.
  • Placeholder
    Publication
    Simultaneous self-sustained actuation and parallel readout with mems cantilever sensor array
    (IEEE, 2012) Leblebici, Yusuf; Department of Electrical and Electronics Engineering; Department of Mathematics; N/A; Department of Electrical and Electronics Engineering; N/A; N/A; Ürey, Hakan; Mostafazadeh, Ali; Ermek, Erhan; Sağıroğlu, Cem; Timurdoğan, Erman; Lüleç, Sevil Zeynep; Faculty Member; Faculty Member; Other; Undergraduate Student; PhD Student; Other; Department of Mathematics; Department of Electrical and Electronics Engineering; College of Engineering; College of Sciences; College of Sciences; College of Engineering; Graduate School of Sciences and Engineering; N/A; 8579; 4231; N/A; N/A; N/A; N/A
    Parallel readout of a microcantilever array using single magnetic actuator and a single photo detector for concurrent detection is reported. The system includes MEMS cantilever array designed for different resonance frequencies, optical elements for laser beam shaping and focusing, one detector and feedback electronics, and single broadband actuator for parallel excitation. The cantilevers are made using a simple one-mask fabrication process with embedded amplitude gratings at the tips. A line shaped laser beam is used to illuminate the cantilevers. A single readout photodiode is placed at the first order diffraction beam location on the Fourier plane. The amplified photodiode signal is fed back into the magnetic actuation using a preamplifier and a broadband current amplifier. In this paper, we report for the first time parallel monitoring of the thermal resonance peaks of inherently frequency-multiplexed MEMS cantilevers. We demonstrated simultaneous self-sustained oscillations of seven cantilevers by using a single actuator and detector in air environment. The method is suitable for low-cost multiplexed portable biosensors.