Researcher:
Akdağ, Mehmet

Loading...
Profile Picture
ORCID

Job Title

Master Student

First Name

Mehmet

Last Name

Akdağ

Name

Name Variants

Akdağ, Mehmet

Email Address

Birth Date

Search Results

Now showing 1 - 1 of 1
  • Placeholder
    Publication
    Proximal biotinylation-based combinatory approach for isolating integral plasma membrane proteins
    (Amer Chemical Soc, 2020) N/A; Department of Molecular Biology and Genetics; N/A; N/A; N/A; Department of Molecular Biology and Genetics; Akdağ, Mehmet; Yunt, Zeynep Sabahat; Kamacıoğlu, Altuğ; Qureshi, Mohammad Haroon; Akarlar, Büşra; Master Student; Teaching Faculty; Master Student; PhD Student; Other; Faculty Member; Department of Molecular Biology and Genetics; Graduate School of Sciences and Engineering; College of Sciences; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; N/A; College of Sciences; N/A; 116178; N/A; N/A; N/A; 105301
    Comprehensive profiling of the cell-surface proteome has been challenging due to the lack of tools for an effective and reproducible way to isolate plasma membrane proteins from mammalian cells. Here we employ a proximity-dependent biotinylation approach to label and isolate plasma membrane proteins without an extra in vitro labeling step, which we call Plasma Membrane-BiolD. The lipid-modified BirA* enzyme (MyrPalm BirA*) was targeted to the inner leaflet of the plasma membrane, where it effectively biotinylated plasma membrane proteins. Biotinylated proteins were then affinity-purified and analyzed by mass spectrometry. Our analysis demonstrates that combining conventional sucrose density gradient centrifugation and Plasma Membrane-BioID is ideal to overcome the inherent limitations of the identification of integral membrane proteins, and it yields highly pure plasma components for downstream proteomic analysis.