Researcher:
Durak, Özce

Loading...
Profile Picture
ORCID

Job Title

Master Student

First Name

Özce

Last Name

Durak

Name

Name Variants

Durak, Özce

Email Address

Birth Date

Search Results

Now showing 1 - 9 of 9
  • Placeholder
    Publication
    [BMIM][OAc] coating layer makes activated carbon almost completely selective for CO2
    (Elsevier Science Sa, 2022) N/A; N/A; Department of Chemical and Biological Engineering; Department of Chemical and Biological Engineering; Durak, Özce; Zeeshan, Muhammad; Keskin, Seda; Uzun, Alper; Master Student; PhD Student; Faculty Member; Faculty Member; Department of Chemical and Biological Engineering; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; N/A; N/A; 40548; 59917
    Tuning the molecular affinity of porous materials towards desired gases is important to achieve superior selectivity for a target separation. Herein, we report a novel composite, prepared by coating an ordinary activated carbon (AC) with an ionic liquid (IL) (1-butyl-3-methylimidazolium acetate, [BMIM][OAc]) offering an almost complete CO2 selectivity over N-2 and CH4. Data indicated that pore blockage by the IL accompanied with the enhancement in polarity and reduction in the hydrophobic character of the surface hindered the sorption of N-2 and CH4. For CO2, on the other hand, new chemisorption and physisorption sites became available associated with the IL layer on the surface, making the composite material significantly selective. Newly formed chemisorption sites attributed to the cation's acidic C2H sites, which become available with bi-layer formation. Presence of multiple competitive sorption sites with different energies was further proven with thermal analysis and detailed spectroscopic analysis. Data showed that CO2/CH4 and CO2/N-2 ideal selectivities boosted from 3.3 to 688.3 (2.3 to 54.7) and from 15.6 to 903.7 (7.1 to 74.3) at 0.1 (1) bar and 25 degrees C, respectively, upon the deposition of IL layer. Especially at lower pressures, the IL/AC material became almost fully selective for CO2 offering ideal selectivities in the order of several tens of thousands. To the best of our knowledge, the remarkable enhancement in the ideal CO2 selectivity by a straightforward post-synthesis modification of an ordinary AC, as reported here, sets a new benchmark in high-performance and efficient gas separation for similar porous materials.
  • Placeholder
    Publication
    Integrating molecular simulations with machine learning guides in the design and synthesis of [bmim][bf(4)]/mof composites for co(2)/n(2) separation
    (American Chemical Society, 2023) N/A; N/A; N/A; N/A; Department of Chemical and Biological Engineering; Department of Chemical and Biological Engineering; Harman, Hilal Dağlar; Gülbalkan, Hasan Can; Habib, Nitasha; Durak, Özce; Uzun, Alper; Keskin, Seda; PhD Student; PhD Student; PhD Student; Undergraduate Student; Faculty Member; Faculty Member; Department of Chemical and Biological Engineering; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences; College of Engineering and Engineering; College of Engineering; N/A; N/A; N/A; N/A; 59917; 40548
    Considering the existence of a large number and variety of metal-organic frameworks (MOFs) and ionic liquids (ILs), assessing the gas separation potential of all possible IL/MOF composites by purely experimental methods is not practical. In this work, we combined molecular simulations and machine learning (ML) algorithms to computationally design an IL/MOF composite. Molecular simulations were first performed to screen approximately 1000 different composites of 1-n-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) with a large variety of MOFs for CO2 and N2 adsorption. The results of simulations were used to develop ML models that can accurately predict the adsorption and separation performances of [BMIM][BF4]/MOF composites. The most important features that affect the CO2/N2 selectivity of composites were extracted from ML and utilized to computationally generate an IL/MOF composite, [BMIM][BF4]/UiO-66, which was not present in the original material data set. This composite was finally synthesized, characterized, and tested for CO2/N2 separation. Experimentally measured CO2/N2 selectivity of the [BMIM][BF4]/UiO-66 composite matched well with the selectivity predicted by the ML model, and it was found to be comparable, if not higher than that of all previously synthesized [BMIM][BF4]/MOF composites reported in the literature. Our proposed approach of combining molecular simulations with ML models will be highly useful to accurately predict the CO2/N2 separation performances of any [BMIM][BF4]/MOF composite within seconds compared to the extensive time and effort requirements of purely experimental methods.
  • Placeholder
    Publication
    Incorporation of a pyrrolidinium-based ionic liquid/MIL-101(Cr) composite into Pebax sets a new benchmark for CO2/N2 selectivity
    (Elsevier, 2023) N/A; N/A; Department of Chemical and Biological Engineering; Department of Chemical and Biological Engineering; Habib, Nitasha; Durak, Özce; Uzun, Alper; Keskin, Seda; PhD Student; Master Student; Faculty Member; Faculty Member; Department of Chemical and Biological Engineering; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; N/A; N/A; 59917; 40548
    Mixed matrix membranes (MMMs) offer a broad potential for energy efficient removal of CO2 from flue gas and natural gas. In this study, we synthesized a novel ionic liquid (IL)/metal organic framework (MOF) composite, [MPPyr][DCA]/MIL-101(Cr), where [MPPyr][DCA] is 1-methyl-1-propyl pyrrolidinium dicyanamide, and incorporated it as a filler into Pebax to fabricate IL/MOF/polymer MMMs. The superior solubility of CO2 in the [MPPyr][DCA] and the strong interactions between IL and CO2 molecules boost the CO2 selectivity of the membrane over N2 and CH4. The results showed that CO2 permeability of the MMM having 15 wt.% [MPPyr] [DCA]/MIL-101(Cr) composite as the filler (148 Barrer) was similar to that of pure Pebax membrane (134 Barrer), while the ideal CO2/N2 selectivity (1347) and ideal CO2/CH4 selectivity (12 2) of the MMM were 45-and 10-times higher compared to the selectivities of pure Pebax membrane, respectively. To the best of our knowledge, the remarkable enhancement in the CO2/N2 selectivity of the MMM sets a new benchmark value for the IL/MOF/polymer MMMs in the literature. These results demonstrate the great potential of using [MPPyr] [DCA]/MIL-101(Cr) composite as a filler for the fabrication of highly selective IL/MOF/polymer MMMs for CO2/N2 and CO2/CH4 separations.
  • Placeholder
    Publication
    Towards complete elucidation of structural factors controlling thermal stability of il/mof composites: effects of ligand functionalization on mofs
    (Iop Publishing Ltd, 2020) N/A; Department of Chemical and Biological Engineering; N/A; N/A; Department of Chemical and Biological Engineering; Department of Chemical and Biological Engineering; Durak, Özce; Kulak, Harun; Kavak, Safiyye; Polat, Hüsamettin Mert; Keskin, Seda; Uzun, Alper; Master Student; Researcher; Researcher; Researcher; Faculty Member; Faculty Member; Department of Chemical and Biological Engineering; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; College of Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; N/A; N/A; N/A; N/A; 40548; 59917
    In this work, we incorporated an ionic liquid (IL), 1-n-butyl-3-methylimidazolium methyl sulfate ([BMIM][MeSO4]) into two different metal organic frameworks (MOFs), UiO-66, and its amino-functionalized counterpart, NH2-UiO-66, to investigate the effects of ligand-functionalization on the thermal stability limits of IL/MOF composites. The as-synthesized IL/MOF composites were characterized in detail by combining x-ray diffraction, scanning electron microscopy, Brunauer-Emmett-Teller analysis, x-ray fluorescence, infrared spectroscopies (FTIR), and their thermal stability limits were determined by thermogravimetric analysis (TGA). Characterization data confirmed the successful incorporation of the IL into each MOF and indicated the presence of direct interactions between them. A comparison of the interactions in [BMIM][MeSO4]-incorporated UiO-66 and NH2-UiO-66 with those in their 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6])-incorporated counterparts showed that the hydrophilic IL, [BMIM][MeSO4], interacts with the 1,4-benzenedicarboxylate (BDC) ligand of the UiO-66, while the hydrophobic IL, [BMIM][PF6], is interacting with the joints where zirconium metal cluster coordinates with BDC ligand. The TGA data demonstrated that the composite with the ligand-functionalized MOF, NH2-UiO-66, exhibited a lower percentage decrease in the maximum tolerable temperature compared to those of IL/UiO-66 composites. Moreover, it is discovered that when the IL is hydrophilic, its hydrogen bonding ability can be utilized to designate an interaction site on MOF's ligand structure, leads to a lower reduction in thermal stability limits. These results provide insights for the rational design of IL/MOF composites and contribute towards the complete elucidation of structural factors controlling the thermal stability.
  • Thumbnail Image
    PublicationOpen Access
    Influence of anion size and electronic structure on the gas separation performance of ionic liquid/ZIF-8 composites
    (Elsevier, 2020) Department of Chemical and Biological Engineering; N/A; Zeeshan, Muhammad; Kulak, Harun; Kavak, Safiyye; Polat, Hüsamettin Mert; Durak, Özce; Keskin, Seda; Uzun, Alper; PhD Student; Faculty Member; Department of Chemical and Biological Engineering; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); N/A; N/A; N/A; N/A; N/A; 40548; 59917
    We investigated the influences of the changes in the electronic structure and size of the anion of an imidazolium ionic liquid (IL) on gas adsorption and separation performance of the IL/ZIF-8 (zeolitic imidazolate framework) composites. We studied four different imidazolium ILs having the same cation, 1-n-butyl-3-methylimidazolium, [BMIM]+, with anions having structures allowing a systematic comparison of the changes in the electronic structure and size. To examine the influence of changes in the electronic structure, we considered anions representing the fluorination on the anion, methanesulfonate, [MeSO3]−, and trifluoromethanesulfonate, [CF3SO3]−. To investigate the change in the anion size, methyl sulfate, [MeSO4]−, and octyl sulfate, [OcSO4]−, were studied. Characterization of IL/ZIF-8 composites demonstrated successful incorporation of each IL in ZIF-8 without causing any detectable changes in the crystal structure and morphology of ZIF-8. Thermogravimetric analysis and infrared (IR) spectroscopy indicated the presence of direct interactions between ILs and ZIF-8, which directly control gas separation performance of the composite. Gas adsorption measurements illustrated that incorporation of ILs significantly improves the gas separation performance of the pristine ZIF-8. [BMIM][MeSO4]/ZIF-8 composite had 3.3- and 1.8-times higher CO2/N2 and CH4/N2 selectivities compared to ZIF-8, respectively, at 1 bar. When the IL has a fluorinated anion, CO2/CH4 selectivity improved 3-times compared to its non-fluorinated counterpart. Upon the incorporation of IL with a small anion, IL/ZIF-8 composite showed higher CO2/N2 and CH4/N2 selectivities compared to the composite having an IL with a bulky anion. These results will contribute in guiding rational design of IL/MOF composites for different gas separations.
  • Thumbnail Image
    PublicationOpen Access
    Composites of porous materials with ionic liquids: synthesis, characterization, applications, and beyond
    (Elsevier, 2022) Department of Chemical and Biological Engineering; Durak, Özce; Zeeshan, Muhammad; Habib, Nitasha; Gülbalkan, Hasan Can; Alsuhile, Ala Abdulalem Abdo Moqbel; Çağlayan, Hatice Pelin; Öztulum, Samira Fatma Kurtoğlu; Zhao, Yuxin; Haşlak, Zeynep Pınar; Uzun, Alper; Keskin, Seda; PhD Student; PhD Student; Faculty Member; Department of Chemical and Biological Engineering; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); College of Engineering; Graduate School of Sciences and Engineering; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; 59917; 40548
    Modification of the physicochemical properties of porous materials by using ionic liquids (ILs) has been widely studied for various applications. The combined advantages of ILs and porous materials provide great potential in gas adsorption and separation, catalysis, liquid-phase adsorption and separation, and ionic conductivity owing to the superior performances of the hybrid composites. In this review, we aimed to provide a perspective on the evolution of IL/porous material composites as a research field by discussing several different types of porous materials, including metal organic frameworks (MOFs), covalent organic frameworks (COFs), zeolites, and carbonaceous-materials. The main challenges and opportunities in synthesis methods, characterization techniques, applications, and future opportunities of IL/porous materials are discussed in detail to create a road map for the area. Future advances of the field addressed in this review will provide in-depth insights into the design and development of these novel hybrid materials and their replacement with conventional materials.
  • Thumbnail Image
    PublicationOpen Access
    An integrated computational-experimental hierarchical approach for the rational design of an IL/UiO-66 composite offering infinite CO2 selectivity
    (Wiley, 2022) Department of Chemical and Biological Engineering; Department of Chemistry; Zeeshan, Muhammad; Gülbalkan, Hasan Can; Durak, Özce; Haşlak, Zeynep Pınar; Ünal, Uğur; Keskin, Seda; Uzun, Alper; PhD Student; Faculty Member; Faculty Member; Department of Chemical and Biological Engineering; Department of Chemistry; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); College of Engineering; College of Sciences; Graduate School of Sciences and Engineering; N/A; N/A; N/A; N/A; 42079; 40548; 59917
    Owing to the possibility of generating theoretically unlimited numbers of ionic liquid (IL)-metal-organic framework (MOF) combinations, experimental studies on IL/MOF composites for gas separation applications are mostly conducted on a trial-and-error basis. To address this problem, an integrated computational-experimental hierarchical approach is presented for selecting the best IL-MOF combination for a target gas separation application. For this purpose, UiO-66 and pyrrolidinium-based ILs are chosen as the parent MOF and IL family, respectively, and three powerful computational tools, Conductor-like Screening Model for Realistic Solvents calculations, density functional theory calculations, and grand canonical Monte Carlo simulations, are integrated to identify the most promising IL-UiO-66 combination as 1-n-butyl-1-methylpyrrolidinium dicyanamide/UiO-66, [BMPyrr][DCA]/UiO-66. Then, this composite is synthesized, characterized in deep detail, and tested for CO2/N-2, CO2/CH4, and CH4/N-2 separations. Results demonstrate that [BMPyrr][DCA]/UiO-66 offers an extraordinary gas separation performance, with practically infinite CO2 and CH4 selectivities over N-2 at 15 degrees C and at low pressures. The integrated hierarchical approach proposed in this work paves the way for the rational design and development of novel IL/MOF composites offering exceptional performance for any desired gas separation application.
  • Thumbnail Image
    PublicationOpen Access
    A novel IL/MOF/polymer mixed matrix membrane having superior CO2/N2 selectivity
    (Elsevier, 2022) Department of Chemical and Biological Engineering; Habib, Nitasha; Durak, Özce; Zeeshan, Muhammad; Uzun, Alper; Keskin, Seda; PhD Student; PhD Student; Faculty Member; Department of Chemical and Biological Engineering; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; N/A; 59917; 40548
    In this work, we synthesized an ionic liquid (IL)/metal organic framework (MOF) composite, 1-ethyl-3-methylimidazolium acetate/copper-1,3,5-benzenetricarboxylate ([EMIM][OAc]/CuBTC) and used it as a filler in a polymer, Pebax, to fabricate novel IL/MOF/polymer mixed matrix membranes (MMMs). CuBTC/Pebax and [EMIM][OAc]/CuBTC/Pebax MMMs having different filler loadings of 10, 15, and 20 wt.% were prepared by solution casting method and characterized using various techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (IR), and thermogravimetric analysis (TGA). Uniform dispersion of MOF and IL/MOF fillers in the MMMs was observed. Incorporation of IL/MOF composite into Pebax significantly improved CO2 permeability and CO2/N2 selectivity of the polymer by 2.5- and 5.5-times, respectively. Gas permeability measurements showed that the MMM having 15 wt.% IL/MOF loading exhibits significantly higher CO2 permeability of 335 Barrer and CO2/N2 selectivity of 176 than the Pebax membrane having CO2 permeability of 135 Barrer and CO2/N2 selectivity of 32. CO2/N2 selectivity of the [EMIM][OAc]/CuBTC/Pebax MMM with 15 wt.% [EMIM][OAc]/CuBTC filler loading was the highest among the selectivity values reported for other types of IL/MOF/polymer MMMs in the literature. All the CuBTC/Pebax MMMs and [EMIM][OAc]/CuBTC/Pebax MMMs that we fabricated in this work exceeded the Robeson's updated upper bound, showing the excellent potential of these novel membranes for CO2/N2 separation.
  • Thumbnail Image
    PublicationOpen Access
    Enhanced water purification performance of ionic liquid impregnated metal-organic framework: dye removal by [BMIM][PF6]/MIL-53(Al) composite
    (Frontiers, 2021) N/A; Department of Chemical and Biological Engineering; Kavak, Safiyye; Durak, Özce; Kulak, Harun; Polat, Hüsamettin Mert; Keskin, Seda; Uzun, Alper; Faculty Member; Department of Chemical and Biological Engineering; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; N/A; N/A; 40548; 59917
    We incorporated a water-stable ionic liquid (IL), 1-butyl-3-methylimidazolium hexafluorophosphate, [BMIM][PF6], into a water-stable metal-organic framework (MOF), MIL-53(Al), to generate the [BMIM][PF6]/MIL-53(Al) composite. This composite was examined for water purification by studying its capacity for methylene blue (MB) and methyl orange (MO) removal from aqueous solutions having either single dye or a mixture of both. Data illustrated that the removal efficiency and the maximum adsorption capacity of MIL-53(Al) were increased several times upon [BMIM][PF6] incorporation. For instance, within 1 min, 10 mg of pristine MIL-53(Al) adsorbed 23.3% MB from 10 mg/L of MB solution, while [BMIM][PF6]/MIL-53(Al) composite was adsorbed 82.3% MB in an identical solution. In the case of MO, 10 mg of pristine MIL-53(Al) achieved 27.8 and 53.6% MO removal from 10 mg/L of MO solution, while [BMIM][PF6]/MIL-53(Al) composite removed 61.4 and 99.2% within 5 min and 3 h, respectively. Moreover, upon [BMIM][PF6] incorporation, the maximum MB and MO adsorption capacities of the pristine MOF were increased from 84.5 to 44 mg/g to 204.9 to 60 mg/g, respectively. The adsorption of dyes in pristine MIL-53(Al) and [BMIM][PF6]/MIL-53(Al) followed a pseudo-second-order kinetic model and a Langmuir isotherm model. In a mixture of both dyes, the IL/MOF composite showed a doubled MB selectivity after the IL incorporation. The composite was successfully regenerated at least two times after its use in water purification to remove MB, MO, and their mixtures. Infrared (IR) spectra indicated that the MB/MO adsorption occurs on [BMIM][PF6]/MIL-53(Al) by electrostatic interactions, hydrogen bonding, and pi-pi interactions. These results showed that [BMIM][PF6]/MIL-53(Al) composite is a highly promising material for efficient water purification.