Researcher:
Yapıcı, Gamze Nur

Loading...
Profile Picture
ORCID

Job Title

PhD Student

First Name

Gamze Nur

Last Name

Yapıcı

Name

Name Variants

Yapıcı, Gamze Nur

Email Address

Birth Date

Search Results

Now showing 1 - 1 of 1
  • Placeholder
    Publication
    Cell cycle-dependent palmitoylation of protocadherin 7 by ZDHHC5 promotes successful cytokinesis
    (Company of Biologists Ltd, 2023) N/A; Department of Molecular Biology and Genetics; Department of Physics; N/A; N/A; Kiraz, Alper; Bavili, Nima; Kamacıoğlu, Altuğ; Küçük, Nazlı Ezgi Özkan; Qureshi, Mohammad Haroon; Yapıcı, Gamze Nur; Yiğit, Berfu Nur; Değirmenci, Beste Senem; Faculty Member; Faculty Member; PhD Student; Master Student; Researcher; PhD Student; PhD Student; PhD Student; PhD Student; Department of Molecular Biology and Genetics; Department of Physics; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); College of Sciences; College of Sciences; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; N/A; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; 105301; 22542; N/A; N/A; N/A; N/A; N/A; N/A; N/A
    Cell division requires dramatic reorganization of the cell cortex, which is primarily driven by the actomyosin network. We previously reported that protocadherin 7 (PCDH7) gets enriched at the cell surface during mitosis, which is required to build up the full mitotic rounding pressure. Here, we report that PCDH7 interacts with and is palmitoylated by the palmitoyltransferase, ZDHHC5. PCDH7 and ZDHHC5 colocalize at the mitotic cell surface and translocate to the cleavage furrow during cytokinesis. The localization of PCDH7 depends on the palmitoylation activity of ZDHHC5. Silencing PCDH7 increases the percentage of multinucleated cells and the duration of mitosis. Loss of PCDH7 expression correlates with reduced levels of active RhoA and phospho-myosin at the cleavage furrow. This work uncovers a palmitoylation-dependent translocation mechanism for PCDH7, which contributes to the reorganization of the cortical cytoskeleton during cell division.