Researcher: Dizbin, Nima Manafzadeh
Name Variants
Dizbin, Nima Manafzadeh
Email Address
Birth Date
1 results
Search Results
Now showing 1 - 1 of 1
Publication Open Access Modelling and analysis of the impact of correlated inter-event data on production control using Markovian arrival processes(Springer, 2019) Department of Business Administration; Department of Industrial Engineering; N/A; Tan, Barış; Dizbin, Nima Manafzadeh; Faculty Member; Department of Business Administration; Department of Industrial Engineering; College of Administrative Sciences and Economics; College of Engineering; Graduate School of Business; 28600; N/AEmpirical studies show that the inter-event times of a production system are correlated. However, most of the analytical studies for the analysis and control of production systems ignore correlation. In this study, we show that real-time data collected from a manufacturing system can be used to build a Markovian arrival processes (MAP) model that captures correlation in inter-event times. The obtained MAP model can then be used to control production in an effective way. We first present a comprehensive review on MAP modeling and MAP fitting methods applicable to manufacturing systems. Then we present results on the effectiveness of these fitting methods and discuss how the collected inter-event data can be used to represent the flow dynamics of a production system accurately. In order to study the impact of capturing the flow dynamics accurately on the performance of a production control system, we analyze a manufacturing system that is controlled by using a base-stock policy. We study the impact of correlation in inter-event times on the optimal base-stock level of the system numerically by employing the structural properties of the MAP. We show that ignoring correlated arrival or service process can lead to overestimation of the optimal base-stock level for negatively correlated processes, and underestimation for the positively correlated processes. We conclude that MAPs can be used to develop data-driven models and control manufacturing systems more effectively by using shop-floor inter-event data.