Researcher: Soner, Burak
Name Variants
Soner, Burak
Email Address
Birth Date
12 results
Search Results
Now showing 1 - 10 of 12
Publication Metadata only Vehicular networks for combating a worldwide pandemic: preventing the spread of COVID-19(Elsevier, 2022) Elbir, Ahmet M.; Papazafeiropoulos, Anastasios K.; Kourtessis, Pandelis; Department of Electrical and Electronics Engineering; N/A; N/A; Ergen, Sinem Çöleri; Gürbilek, Gökhan; Soner, Burak; Faculty Member; PhD Student; PhD Student; Department of Electrical and Electronics Engineering; College of Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; 7211; N/A; N/AAs a worldwide pandemic, the coronavirus disease-19 (COVID-19) has caused serious restrictions in people's social life, along with the loss of lives, the collapse of economies and the disruption of humanitarian aids. Despite the advance of technological developments, we, as researchers, have witnessed that several issues need further investigation for a better response to a pandemic outbreak. Therefore, researchers recently started developing ideas to stop or at least reduce the spread of the pandemic. While there have been some prior works on wireless networks for combating a pandemic scenario, vehicular networks and their potential bottlenecks have not yet been fully examined. Furthermore, the vehicular scenarios can be identified as the locations, where the social distancing is mostly violated. With this motivation, this article provides an extensive discussion on vehicular networking for combating a pandemic. We provide the major applications of vehicular networking for combating COVID-19 in public transportation, in-vehicle diagnosis, border patrol and social distance monitoring. Next, we identify the unique characteristics of the collected data in terms of privacy, flexibility and coverage, then highlight corresponding future directions in privacy preservation, resource allocation, data caching and data routing. We believe that this work paves the way for the development of new products and algorithms that can facilitate the social life and help controlling the spread of the pandemic.Publication Metadata only Location-aware adaptive physical layer design for vehicular visible light communication(IEEE, 2019) Department of Electrical and Electronics Engineering; N/A; N/A; N/A; Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; Gürbilek, Gökhan; Koca, Mertkan; Uyrus, Ali; Soner, Burak; Başar, Ertuğrul; Ergen, Sinem Çöleri; Researcher; Master Student; PhD Student; PhD Student; Faculty Member; Faculty Member; Department of Electrical and Electronics Engineering; College of Sciences; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; N/A; N/A; N/A; N/A; 149116; 7211Vehicular visible light communication (V2LC) is expected to complement radio frequency (RF) technologies for higher reliability in vehicular connectivity. Since high mobility makes the line-of-sight V2LC channel very dynamic, an adaptive physical layer (PHY) design is required for realizing a rate-optimal and reliable V2LC system. Existing studies on adaptive PHY designs have mostly considered indoor scenarios with low mobility and require a feedback channel for both reporting the received signal-to-noise ratio (SNR) to the transmitter and channel equalization (CE), which increases system complexity and introduces overhead. This paper presents a novel low-complexity adaptive PHY design that provides rate-optimal and reliable V2LC without a feedback channel. The proposed design utilizes a priori measurements of the BER with respect to SNR, which are static for V2LC on the road. SNR is predicted in real-time based on the relative locations of the transmitting (TX) and receiving (RX) vehicles using a path loss model based on a priori measurements of the SNR-distance relationship and the polar beam pattern for a given TX/RX pair, in a given setting. The proposed design is validated via night-time experiments with On-Off-Keying (OOK), 4-Pulse-Position Modulation (4-PPM) and Direct Current-Biased Optical OFDM (DCO-OFDM). The proposed location-aware adaptive PHY design can be expanded for general reliable rate-optimal V2LC use by updating the path loss model with additional measurements for different settings.Publication Metadata only Empirical feasibility analysis for energy harvesting intravehicular wireless sensor networks(Ieee-Inst Electrical Electronics Engineers Inc, 2021) N/A; N/A; Department of Electrical and Electronics Engineering; N/A; Department of Electrical and Electronics Engineering; Koca, Mertkan; Gürbilek, Gökhan; Soner, Burak; Ergen, Sinem Çöleri; Master Student; Researcher; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; N/A; 7211Vehicle systems currently utilize wired networks for power delivery and communication between nodes. Wired networks cannot practically accommodate nodes in moving parts and with the increasing functional complexity in vehicles, they require kilometer-long harnesses, significantly increasing fuel consumption, manufacturing, and design costs. Alternatively, energy harvesting intravehicular wireless sensor networks (IVWSNs) can accommodate nodes in all locations and they obviate the need for wiring, significantly lowering costs. This article empirically analyzes the feasibility of such an IVWSN framework via extensive in-vehicle measurements for communications at 2.4 GHz, ultrawideband (UWB), and millimeter-wave (mmWave) together with radio frequency (RF), thermal, and vibration energy harvesting. Our analyses indicate mmWave performs best for short Line-of-Sight (LoS) links in the engine compartment with performance close to UWB for LoS links in the chassis and passenger compartments considering worst case signal-to-interference-and-noise ratio (SINR). For non-LoS links, which appear mostly in the engine compartment and chassis, UWB provides the highest security and reliability. 2.4 GHz suffers heavily from interference in all compartments while UWB utilizes narrowband suppression techniques at the cost of lower bandwidth; mmWave inherently experiences very low interference due to its propagation characteristics. On the other hand, RF energy harvesting provides up to 1 mW of power in all compartments. Vibration and thermal energy harvesters can supply nodes consuming <10 mW in the engine compartment and <5 mW nodes in the chassis. In the passenger compartment, thermal harvesting is not available due to low temperature gradients, but vibration and RF sources can supply <1 mW nodes.Publication Metadata only Vehicular visible light positioning with a single receiver(IEEE, 2019) N/A; Department of Electrical and Electronics Engineering; Soner, Burak; Ergen, Sinem Çöleri; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 7211Vehicle-to-vehicle (V2V) communication and positioning systems are expected to play an important role in the development of future automated and autonomous vehicle safety concepts. Visible light communication and positioning (VLC and VLP) promise high data rates and cm-level positioning accuracy, respectively, with vehicle head/tail lights. Existing methods for vehicular VLP often require multiple spatially-separated co-operating nodes with either tightly synchronized clocks or precisely known relative locations and they dictate certain modulation schemes or message content for the VLC subsystem. The proposed novel VLP method utilizes a single VLC receiver capable of measuring angle-of-arrival (AoA) on a receiving vehicle (RXV). The method dictates no modulation constraints on the VLC subsystem and no co-operation is required from the transmitting vehicle (TXV) other than disseminating its real-time speed and heading information via VLC. The method uses speed and heading data and two consecutive AoA samples from the same receiver to deduce 2D position of the TXV relative to the RXV with triangulation. Simulation results show the method performs cm-level positioning accuracy at >50Hz rates under realistic road and VLC channel conditions. With such performance, the proposed VLP method enables time-critical traffic safety applications like collision avoidance.Publication Metadata only Visible light communications in industrial internet of things (IIoT)(Springer International Publishing Ag, 2019) Demir, Kadir Alpaslan; N/A; N/A; Department of Electrical and Electronics Engineering; Turan, Buğra; Soner, Burak; Ergen, Sinem Çöleri; PhD Student; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 7211Miniaturization of sensors and hardware for enabling technologies such as wireless charging, energy harvesting, and low-power communications are foreseen to play an important role in the future of various industries ranging from manufacturing to automotive. These industries are projected to become mainly data-driven, as the data acquisition and manipulation capabilities are becoming the main competencies in these industries. Hence, the Industrial Internet of Things (IIoT) emerges not only as a key paradigm for distributed control of actuators but also solidifies the need for capturing and processing data. In this chapter, we discuss the use of visible light communications (VLC) within the IIoT paradigm. VLC considers the use of light sources and photodetectors operating in the visible band of the electromagnetic spectrum (e.g., light-emitting diodes) for communication purposes. Since VLC works in the visible band, it does not further congest the already over-crowded radio frequency (RF) bands. VLC is also secure, RF interference-free, low-cost, and energy efficient. Thus, it has been considered for utilization in many application areas such as intelligent transport systems, indoor localization, and communication in RF-sensitive zones. In this chapter, while discussing the advantages and limitations of using VLC in IIoT systems, we further explore the possible utilization of bi-directional LED to LED communication within this scope for very low-cost communication devices. Finally, we discuss current and possible future applications of VLC in the IIoT context, identifying the following as potential future applications: LED-Based IIoT sensor data transmissions, LED beaconing for localization and signaling, wearable VLC devices for safety, VLC for ubiquitous computing, VLC-supported augmented reality, VLC for smart farming, VLC-assisted energy load scheduling, VLC-supported industrial Internet of Underwater Things, VLC-offloaded telecom services, and VLC usage in the transportation industry.Publication Metadata only Visible light communication based vehicle localization for collision avoidance and platooning(IEEE-Inst Electrical Electronics Engineers Inc, 2021) N/A; Department of Electrical and Electronics Engineering; Soner, Burak; Ergen, Sinem Çöleri; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 7211Collision avoidance and platooning applications require vehicle localization at cm-level accuracy and at least 50 Hz rate for full autonomy. The RADAR/LIDAR and camera based methods currently used for vehicle localization do not satisfy these requirements, necessitating complementary technologies. Visible light positioning (VLP) is a highly suitable complementary technology due to its high accuracy and high rate, exploiting the line-of-sight propagation feature of the visible light communication (VLC) signals from LED head/tail lights. However, existing vehicular VLP algorithms impose restrictive requirements, e.g., use of high-bandwidth circuits, road-side lights and certain VLC modulation strategies, and work for limited relative vehicle orientations, thus, are not feasible for general use. This paper proposes a VLC-based vehicle localization method that eliminates these restrictive requirements by a novel VLC receiver design and associated vehicular VLP algorithm. The VLC receiver, named QRX, is low-cost/size, and enables high-rate VLC and high-accuracy angle-of-arrival (AoA) measurement, simultaneously, via the usage of a quadrant photodiode. The VLP algorithm estimates the positions of two head/tail light VLC transmitters (TX) on a neighbouring vehicle by using AoA measurements from two QRXs for localization. The algorithm is theoretically analyzed by deriving its Cramer-Rao lower bound on positioning accuracy, and simulated localization performance is evaluated under realistic platooning and collision avoidance scenarios. Results demonstrate that the proposed method performs at cm-level accuracy and up to 250 Hz rate within a 10 m range under realistic harsh road and channel conditions, demonstrating its eligibility for collision avoidance and safe platooning.Publication Metadata only Federated learning in vehicular networks(Institute of Electrical and Electronics Engineers Inc., 2022) Elbir, Ahmet M.; Gündüz, Deniz; Bennis, Mehdi; Department of Electrical and Electronics Engineering; N/A; Ergen, Sinem Çöleri; Soner, Burak; Faculty Member; PhD Student; Department of Electrical and Electronics Engineering; College of Engineering; Graduate School of Sciences and Engineering; 7211; N/AMachine learning (ML) has recently been adopted in vehicular networks for applications such as autonomous driving, road safety prediction and vehicular object detection, due to its model-free characteristic, allowing adaptive fast response. However, most of these ML applications employ centralized learning (CL), which brings significant overhead for data trans-mission between the parameter server and vehicular edge devices. Federated learning (FL) framework has been recently introduced as an efficient tool with the goal of reducing transmission overhead while achieving privacy through the transmission of model updates instead of the whole dataset. In this paper, we investigate the usage of FL over CL in vehicular network applications to develop intelligent transportation systems. We provide a comprehensive analysis on the feasibility of FL for the ML based vehicular applications, as well as investigating object detection by utilizing image-based datasets as a case study. Then, we identify the major challenges from both learning perspective, i.e., data labeling and model training, and from the communications point of view, i.e., data rate, reliability, transmission overhead, privacy and resource management. Finally, we highlight related future research directions for FL in vehicular networks.Publication Open Access Location-aware adaptive physical layer design for vehicular visible light communication(Institute of Electrical and Electronics Engineers (IEEE), 2019) Department of Electrical and Electronics Engineering; Gürbilek, Gökhan; Koca, Mertkan; Uyrus, Ali; Soner, Burak; Ergen, Sinem Çöleri; Başar, Ertuğrul; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; N/A; N/A; 7211; 149116Vehicular visible light communication (V2LC) is expected to complement radio frequency (RF) technologies for higher reliability in vehicular connectivity. Since high mobility makes the line-of-sight V2LC channel very dynamic, an adaptive physical layer (PHY) design is required for realizing a rate-optimal and reliable V2LC system. Existing studies on adaptive PHY designs have mostly considered indoor scenarios with low mobility and require a feedback channel for both reporting the received signal-to-noise ratio (SNR) to the transmitter and channel equalization (CE), which increases system complexity and introduces overhead. This paper presents a novel low-complexity adaptive PHY design that provides rate-optimal and reliable V2LC without a feedback channel. The proposed design utilizes a priori measurements of the BER with respect to SNR, which are static for V2LC on the road. SNR is predicted in real-time based on the relative locations of the transmitting (TX) and receiving (RX) vehicles using a path loss model based on a priori measurements of the SNR-distance relationship and the polar beam pattern for a given TX/RX pair, in a given setting. The proposed design is validated via night-time experiments with On-Off-Keying (OOK), 4-Pulse-Position Modulation (4-PPM) and Direct Current-Biased Optical OFDM (DCO-OFDM). The proposed location-aware adaptive PHY design can be expanded for general reliable rate-optimal V2LC use by updating the path loss model with additional measurements for different settings.Publication Open Access Light-efficient augmented reality display with steerable eyebox(Optical Society of America (OSA), 2019) Department of Electrical and Electronics Engineering; Hedili, M. Kıvanç; Soner, Burak; Ulusoy, Erdem; Ürey, Hakan; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; N/A; N/A; 111927; 8579We present a novel head-mounted display setup that uses the pinhole imaging principle coupled with a low-latency dynamic pupil follower. A transmissive LCD is illuminated by a single LED backlight. LED illumination is focused onto the viewer's pupil to form an eyebox smaller than the average human pupil, thereby creating a pinhole display effect where objects at all distances appear in focus. Since nearly all the light is directed to the viewer's pupil, a single low-power LED for each primary color with 0.42 lumens total output is sufficient to create a bright and full-color display of 360 cd/m(2) luminance. In order to follow the viewer's pupil, the eyebox needs to be steerable. We achieved a dynamic eyebox using an array of LEDs that is coupled with a real-time pupil tracker. The entire system is operated at 11 msec motion-to-photon latency, which meets the demanding requirements of the real-time pupil follower system. Experimental results effectively demonstrated our head-mounted pinhole display with 37 degrees FOV and very high light efficiency, equipped with a pupil follower with low motion-to-photon latency.Publication Open Access A low-SWaP, low-Cost transceiver for physically secure UAV communication with visible light(Springer, 2020) Department of Electrical and Electronics Engineering; Ergen, Sinem Çöleri; Soner, Burak; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; Graduate School of Sciences and Engineering; 7211; N/AUnmanned aerial vehicles (UAV) are expected to utilize optical wireless technologies alongside radio frequency technologies for reliable, secure and high bandwidth communications. While terrestrial and atmospheric laser-based solutions in the past have achieved physically secure communication with very complex beam tracking/pointing mechanisms with large and costly telescopes, such systems are neither suitable nor necessary for medium-range (<100 m) commercial UAV communications. With the proliferation of low-cost solid-state lighting equipment and visible band photodetectors, visible light communications (VLC) offer a low-size-weight-and-power (SWaP) and low-cost solution. This paper presents a novel low-SWaP and low-cost transceiver for physically secure VLC in medium-range commercial UAV applications. Full implementation details for a proof-of-concept prototype built completely with off-the-shelf components are also reported.