Researcher:
Hacısüleyman, Aysima

Loading...
Profile Picture
ORCID

Job Title

PhD Student

First Name

Aysima

Last Name

Hacısüleyman

Name

Name Variants

Hacısüleyman, Aysima

Email Address

Birth Date

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    PublicationOpen Access
    Synchronous and asynchronous response in dynamically perturbed proteins
    (American Chemical Society (ACS), 2021) Erkip, Albert; Erman, Batu; Department of Chemical and Biological Engineering; Department of Chemical and Biological Engineering; Hacısüleyman, Aysima; Erman, Burak; Faculty Member; Graduate School of Sciences and Engineering; College of Engineering; N/A; 179997
    We present a dynamic perturbation-response model of proteins based on the Gaussian Network Model, where a residue is perturbed periodically, and the dynamic response of other residues is determined. The model shows that periodic perturbation causes a synchronous response in phase with the perturbation and an asynchronous response that is out of phase. The asynchronous component results from the viscous effects of the solvent and other dispersive factors in the system. The model is based on the solution of the Langevin equation in the presence of solvent, noise, and perturbation. We introduce several novel ideas: The concept of storage and loss compliance of the protein and their dependence on structure and frequency; the amount of work lost and the residues that contribute significantly to the lost work; new dynamic correlations that result from perturbation; causality, that is, the response of j when i is perturbed is not equal to the response of i when j is perturbed. As examples, we study two systems, namely, bovine rhodopsin and the class of nanobodies. The general results obtained are (i) synchronous and asynchronous correlations depend strongly on the frequency of perturbation, their magnitude decreases with increasing frequency, (ii) time-delayed mean-squared fluctuations of residues have only synchronous components. Asynchronicity is present only in cross correlations, that is, correlations between different residues, (iii) perturbation of loop residues leads to a large dissipation of work, (iv) correlations satisfy the hypothesis of pre-existing pathways according to which information transfer by perturbation rides on already existing equilibrium correlations in the system, (v) dynamic perturbation can introduce a selective response in the system, where the perturbation of each residue excites different sets of responding residues, and (vi) it is possible to identify nondissipative residues whose perturbation does not lead to dissipation in the protein. Despite its simplicity, the model explains several features of allosteric manipulation.
  • Thumbnail Image
    PublicationOpen Access
    Causality, transfer entropy, and allosteric communication landscapes in proteins with harmonic interactions
    (Wiley, 2017) Department of Chemical and Biological Engineering; Department of Chemical and Biological Engineering; Hacısüleyman, Aysima; Erman, Burak; Faculty Member; College of Engineering; N/A; 179997
    A fast and approximate method of generating allosteric communication landscapes in proteins is presented by using Schreiber's entropy transfer concept in combination with the Gaussian Network Model of proteins. Predictions of the model and the allosteric communication landscapes generated show that information transfer in proteins does not necessarily take place along a single path, but an ensemble of pathways is possible. The model emphasizes that knowledge of entropy only is not sufficient for determining allosteric communication and additional information based on time delayed correlations should be introduced, which leads to the presence of causality in proteins. The model provides a simple tool for mapping entropy sink-source relations into pairs of residues. By this approach, residues that should be manipulated to control protein activity may be determined. This should be of great importance for allosteric drug design and for understanding the effects of mutations on function. The model is applied to determine allosteric communication in three proteins, Ubiquitin, Pyruvate Kinase, and the PDZ domain. Predictions are in agreement with molecular dynamics simulations and experimental evidence.
  • Thumbnail Image
    PublicationOpen Access
    ModiBodies: a computational method for modifying nanobodies in nanobody-antigen complexes to improve binding affinity and specificity
    (Springer, 2020) Department of Chemical and Biological Engineering; Department of Chemical and Biological Engineering; Hacısüleyman, Aysima; Erman, Burak; Faculty Member; Graduate School of Sciences and Engineering; College of Engineering; N/A; 179997
    Nanobodies are special derivatives of antibodies, which consist of single domain fragments. They have become of considerable interest as next-generation biotechnological tools for antigen recognition. They can be easily engineered due to their high stability and compact size. Nanobodies have three complementarity-determining regions, CDRs, which are enlarged to provide a similar binding surface to that of human immunoglobulins. Here, we propose a benchmark testing algorithm that uses 3D structures of already existing protein-nanobody complexes as initial structures followed by successive mutations on the CDR domains. The aim is to find optimum binding amino acids for hypervariable residues of CDRs. We use molecular dynamics simulations to compare the binding energies of the resulting complexes with that of the known complex and accept those that are improved by mutations. We use the MDM4-VH9 complex, (PDB id 2VYR), fructose-bisphosphate aldolase from Trypanosoma congolense (PDB id 5O0W) and human lysozyme (PDB id 4I0C) as benchmark complexes. By using this algorithm, better binding nanobodies can be generated in a short amount of time. We suggest that this method can complement existing immune and synthetic library-based methods, without a need for extensive experimentation or large libraries.
  • Thumbnail Image
    PublicationOpen Access
    Entropy transfer between residue pairs and allostery in proteins: quantifying allosteric communication in ubiquitin
    (Public Library of Science, 2017) Department of Chemical and Biological Engineering; Department of Chemical and Biological Engineering; Erman, Burak; Hacısüleyman, Aysima; Faculty Member; PhD Student; College of Sciences; Graduate School of Sciences and Engineering; 179997; N/A
    It has recently been proposed by Gunasakaran et al. that allostery may be an intrinsic property of all proteins. Here, we develop a computational method that can determine and quantify allosteric activity in any given protein. Based on Schreiber's transfer entropy formulation, our approach leads to an information transfer landscape for the protein that shows the presence of entropy sinks and sources and explains how pairs of residues communicate with each other using entropy transfer. The model can identify the residues that drive the fluctuations of others. We apply the model to Ubiquitin, whose allosteric activity has not been emphasized until recently, and show that there are indeed systematic pathways of entropy and information transfer between residues that correlate well with the activities of the protein. We use 600 nanosecond molecular dynamics trajectories for Ubiquitin and its complex with human polymerase iota and evaluate entropy transfer between all pairs of residues of Ubiquitin and quantify the binding susceptibility changes upon complex formation. We explain the complex formation propensities of Ubiquitin in terms of entropy transfer. Important residues taking part in allosteric communication in Ubiquitin predicted by our approach are in agreement with results of NMR relaxation dispersion experiments. Finally, we show that time delayed correlation of fluctuations of two interacting residues possesses an intrinsic causality that tells which residue controls the interaction and which one is controlled. Our work shows that time delayed correlations, entropy transfer and causality are the required new concepts for explaining allosteric communication in proteins