Researcher: Karatüm, Onuralp
Name Variants
Karatüm, Onuralp
Email Address
Birth Date
14 results
Search Results
Now showing 1 - 10 of 14
Publication Metadata only Light-emitting devices based on Type-II InP/ZnO quantum dots(American Chemical Society (ACS), 2019) N/A; Department of Electrical and Electronics Engineering; N/A; N/A; Department of Electrical and Electronics Engineering; N/A; Department of Electrical and Electronics Engineering; Karatüm, Onuralp; Jalali, Houman Bahmani; Sadeghi, Sadra; Melikov, Rustamzhon; Srivastava, Shashi Bhushan; Nizamoğlu, Sedat; PhD Student; PhD Student; PhD Student; PhD Student; Researcher; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; N/A; College of Engineering; N/A; N/A; N/A; N/A; N/A; N/A; 130295One of the major challenges for present-day quantum dot light-emitting diode (QLED) technology is the transition from toxic heavy metal to "green" material-based devices. This report proposes an alternative cadmium-free material of type-II InP/ZnO core/shell quantum dots (QDs) for QLEDs. In this study, InP/ZnO core/shell QDs are nanoengineered by adjusting the shell coverage for optimum in-film quantum efficiency, and device parameters are investigated to reach a maximum QLED performance. The fully solution processed QLEDs made of biocompatible and environmentally benign QDs presented in this study exhibit low turn on voltage of 2.8 V, external quantum efficiency of 0.53%, and current efficiency of 1 cd/A, with a saturated color emission in the yellow-orange spectral region. This study paves the way towards nontoxic and efficient LEDs using type-II QDs.Publication Metadata only RuO2 supercapacitor enables flexible, safe, and efficient optoelectronic neural interface(Wiley-V C H Verlag Gmbh, 2022) Ulgut, Burak; N/A; N/A; N/A; N/A; Department of Electrical and Electronics Engineering; Karatüm, Onuralp; Yıldız, Erdost; Kaleli, Humeyra Nur; Şahin, Afsun; Nizamoğlu, Sedat; PhD Student; PhD Student; PhD Student; Faculty Member; Faculty Member; Department of Electrical and Electronics Engineering; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM; Graduate School of Sciences and Engineering; Graduate School of Health Sciences; Graduate School of Health Sciences; School of Medicine; College of Engineering; N/A; N/A; N/A; 171267; 130295Optoelectronic biointerfaces offer a wireless and nongenetic neurostimulation pathway with high spatiotemporal resolution. Fabrication of low-cost and flexible optoelectronic biointerfaces that have high photogenerated charge injection densities and clinically usable cell stimulation mechanism is critical for rendering this technology useful for ubiquitous biomedical applications. Here, supercapacitor technology is combined with flexible organic optoelectronics by integrating RuO2 into a donor-acceptor photovoltaic device architecture that facilitates efficient and safe photostimulation of neurons. Remarkably, high interfacial capacitance of RuO2 resulting from reversible redox reactions leads to more than an order-of-magnitude increase in the safe stimulation mechanism of capacitive charge transfer. The RuO2-enhanced photoelectrical response activates voltage-gated sodium channels of hippocampal neurons and elicits repetitive, low-light intensity, and high-success rate firing of action potentials. Double-layer capacitance together with RuO2-induced reversible faradaic reactions provide a safe stimulation pathway, which is verified via intracellular oxidative stress measurements. All-solution-processed RuO2-based biointerfaces are flexible, biocompatible, and robust under harsh aging conditions, showing great promise for building safe and highly light-sensitive next-generation neural interfaces.Publication Metadata only Ecofriendly and efficient luminescent solar concentrators based on fluorescent proteins(amer Chemical Soc, 2019) N/A; N/A; N/A; N/A; Department of Electrical and Electronics Engineering; N/A; Department of Molecular Biology and Genetics; Department of Electrical and Electronics Engineering; Sadeghi, Sadra; Melikov, Rustamzhon; Jalali, Houman Bahmani; Karatüm, Onuralp; Srivastava, Shashi Bhushan; Çonkar, Deniz; Karalar, Elif Nur Fırat; Nizamoğlu, Sedat; PhD Student; PhD Student; PhD Student; PhD Student; Researcher; PhD Student; Faculty Member, Faculty Member; Department of Molecular Biology and Genetics; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; Graduate School of Sciences and Engineering; College of Sciences; College of Engineering; N/A; N/A; N/A; N/A; N/A; N/A; 206349; 130295In recent years, luminescent solar concentrators (LSCs) have received renewed attention as a versatile platform for large-area, high-efficiency, and low-cost solar energy harvesting. So far, artificial or engineered optical materials, such as rare-earth ions, organic dyes, and colloidal quantum dots (QDs) have been incorporated into LSCs. Incorporation of nontoxic materials into efficient device architectures is critical for environmental sustainability and clean energy production. Here, we demonstrated LSCs based on fluorescent proteins, which are biologically produced, ecofriendly, and edible luminescent biomaterials along with exceptional optical properties. We synthesized mScarlet fluorescent proteins in Escherichia coli expression system, which is the brightest protein with a quantum yield of 61% in red spectral region that matches well with the spectral response of silicon solar cells. Moreover, we integrated fluorescent proteins in an aqueous medium into solar concentrators, which preserved their quantum efficiency in LSCs and separated luminescence and wave-guiding regions due to refractive index contrast for efficient energy harvesting. Solar concentrators based on mScarlet fluorescent proteins achieved an external LSC efficiency of 2.58%, and the integration at high concentrations increased their efficiency approaching to 5%, which may facilitate their use as “luminescent solar curtains” for in-house applications. The liquid-state integration of proteins paves a way toward efficient and “green” solar energy harvesting.Publication Metadata only Highly efficient white LEDs by using near unity emitting colloidal quantum dots in liquid medium(Optica Publishing Group, 2022) Department of Electrical and Electronics Engineering; Department of Chemistry; Department of Chemistry; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; Department of Electrical and Electronics Engineering; Nizamoğlu, Sedat; Yılgör, İskender; Metin, Önder; Özer, Melek Sermin; Önal, Asım; Eren, Güncem Özgün; Sadeghi, Sadra; Melikov, Rustamzhon; Jalali, Houman Bahmani; Doğru-Yüksel, Itır Bakış; Han, Mertcan; Karatüm, Onuralp; Faculty Member; Faculty Member; Faculty Member; Researcher; PhD Student; PhD Student; PhD Student; PhD Student; PhD Student; PhD Student; Master Student; Other; Department of Chemistry; Department of Electrical and Electronics Engineering; College of Engineering; College of Sciences; College of Sciences; N/A; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; 130295; 24181; 46962; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/AWe developed quantum dot (QD) based color-conversion white LEDs that reach over 150 lumens per electrical Watt. For that we synthesized alloyed ZnCdSe/ZnSe QDs with 94% of quantum efficiency and injected QD-liquids on blue LEDs.Publication Metadata only Optical neuromodulation at all scales: from nanomaterials to wireless optoelectronics and integrated systems(Royal Society of Chemistry (RSC), 2023) Gwak, Min-Jun; Hyun, Junghun; Koirala, Gyan Raj; Kim, Tae-Il; N/A; N/A; Department of Electrical and Electronics Engineering; Karatüm, Onuralp; Önal, Asım; Nizamoğlu, Sedat; PhD Student; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 130295Light-based neuromodulation systems offer exceptional spatiotemporal resolution combined with the elimination of physical tether to communicate with neurons. Currently, optical neuromodulation systems ranging from the nano to the centimeter scale enable neural activity control from the single cell to the organ level in retina, heart, spinal cord, and brain, facilitating a wide range of experiments in intact and freely moving animals in different contexts, such as during social interactions and behavioral tasks. Nanotransducers (e.g., metallic nanoparticles, silicon nanowires, and polymeric nanoparticles) and microfabricated photodiodes convert light to electrical, thermal, and mechanical stimuli that can allow remote and non-contact stimulation of neurons. Moreover, integrated devices composed of nano and microscale optoelectronic components comprise fully implantable and wirelessly powered smart optoelectronic systems that exhibit multimodal and closed-loop operation. In this review, we first discuss the material platforms, stimulation mechanisms, and applications of passive systems, i.e., nanotransducers and microphotodiodes. Then, we review the use of organic and inorganic light-emitting diodes for optogenetics and implantable wireless optoelectronic systems that enable closed-loop optogenetic neuromodulation through the use of light-emitting diodes, wireless power transfer circuits, and feedback loops. Exploration of materials and mechanisms together with the presented applications from both research and clinical perspectives in this review provides a comprehensive understanding of the optical neuromodulation field with its advantages and challenges to build superior systems in the future.Publication Open Access Nanoengineering InP quantum dot-based photoactive biointerfaces for optical control of neurons(Frontiers, 2021) Ulgut, Burak; Department of Electrical and Electronics Engineering; Department of Chemical and Biological Engineering; N/A; Nizamoğlu, Sedat; Kavaklı, İbrahim Halil; Şahin, Afsun; Karatüm, Onuralp; Aria, Mohammad Mohammadi; Eren, Güncem Özgün; Yıldız, Erdost; Melikov, Rustamzhon; Srivastava, Shashi Bhushan; Sürme, Saliha; Doğru-Yüksel, Itır Bakış; Jalali, Houman Bahmani; Faculty Member; Faculty Member; Faculty Member; PhD Student; Researcher; Teaching Faculty; PhD Student; Department of Electrical and Electronics Engineering; Department of Chemical and Biological Engineering; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); College of Engineering; School of Medicine; Graduate School of Sciences and Engineering; Graduate School of Health Sciences; 130295; 40319; 171267; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/ALight-activated biointerfaces provide a non-genetic route for effective control of neural activity. InP quantum dots (QDs) have a high potential for such biomedical applications due to their uniquely tunable electronic properties, photostability, toxic-heavy-metal-free content, heterostructuring, and solution-processing ability. However, the effect of QD nanostructure and biointerface architecture on the photoelectrical cellular interfacing remained unexplored. Here, we unravel the control of the photoelectrical response of InP QD-based biointerfaces via nanoengineering from QD to device-level. At QD level, thin ZnS shell growth (similar to 0.65 nm) enhances the current level of biointerfaces over an order of magnitude with respect to only InP core QDs. At device-level, band alignment engineering allows for the bidirectional photoelectrochemical current generation, which enables light-induced temporally precise and rapidly reversible action potential generation and hyperpolarization on primary hippocampal neurons. Our findings show that nanoengineering QD-based biointerfaces hold great promise for next-generation neurostimulation devices.Publication Open Access Plasmon-coupled photocapacitor neuromodulators(American Chemical Society (ACS), 2020) Ülgüt, Burak; Çetin, Arif E.; N/A; N/A; Department of Molecular Biology and Genetics; Department of Electrical and Electronics Engineering; Department of Chemical and Biological Engineering; Melikov, Rustamzhon; Srivastava, Shashi Bhushan; Karatüm, Onuralp; Doğru-Yüksel, Itır Bakış; Jalali, Houman Bahmani; Sadeghi, Sadra; Dikbaş, Uğur Meriç; Kavaklı, İbrahim Halil; Nizamoğlu, Sedat; PhD Student; Researcher; PhD Student; PhD Student; Master Student; Faculty Member; Faculty Member; Department of Molecular Biology and Genetics; Department of Electrical and Electronics Engineering; Department of Chemical and Biological Engineering; Graduate School of Sciences and Engineering; College of Sciences; College of Engineering; N/A; N/A; N/A; N/A; N/A; N/A; N/A; 40319; 130295Efficient transduction of optical energy to bioelectrical stimuli is an important goal for effective communication with biological systems. For that, plasmonics has a significant potential via boosting the light-matter interactions. However, plasmonics has been primarily used for heat-induced cell stimulation due to membrane capacitance change (i.e., optocapacitance). Instead, here, we demonstrate that plasmonic coupling to photocapacitor biointerfaces improves safe and efficacious neuromodulating displacement charges for an average of 185% in the entire visible spectrum while maintaining the faradic currents below 1%. Hot-electron injection dominantly leads the enhancement of displacement current in the blue spectral window, and the nanoantenna effect is mainly responsible for the improvement in the red spectral region. The plasmonic photocapacitor facilitates wireless modulation of single cells at three orders of magnitude below the maximum retinal intensity levels, corresponding to one of the most sensitive optoelectronic neural interfaces. This study introduces a new way of using plasmonics for safe and effective photostimulation of neurons and paves the way toward ultrasensitive plasmon-assisted neurostimulation devices.Publication Open Access Biocompatible quantum funnels for neural photostimulation(American Chemical Society (ACS), 2019) N/A; Department of Chemical and Biological Engineering; N/A; Department of Electrical and Electronics Engineering; Department of Molecular Biology and Genetics; N/A; Jalali, Houman Bahmani; Doğru-Yüksel, Itır Bakış; Eren, Güncem Özgün; Nizamoğlu, Sedat; Karatüm, Onuralp; Melikov, Rustamzhon; Dikbaş, Uğur Meriç; Kavaklı, İbrahim Halil; Sadeghi, Sadra; Yıldız, Erdost; Ergün, Çağla; Şahin, Afsun; PhD Student; Faculty Member; PhD Student; Master Student; Faculty Member; PhD Student; PhD Student; Faculty Member; Department of Chemical and Biological Engineering; Department of Electrical and Electronics Engineering; Department of Molecular Biology and Genetics; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Graduate School of Sciences and Engineering; College of Engineering; College of Sciences; School of Medicine; N/A; N/A; N/A; 130295; N/A; N/A; N/A; 40319; N/A; N/A; N/A; 171267Neural photostimulation has high potential to understand the working principles of complex neural networks and develop novel therapeutic methods for neurological disorders. A key issue in the light-induced cell stimulation is the efficient conversion of light to bioelectrical stimuli. In photosynthetic systems developed in millions of years by nature, the absorbed energy by the photoabsorbers is transported via nonradiative energy transfer to the reaction centers. Inspired by these systems, neural interfaces based on biocompatible quantum funnels are developed that direct the photogenerated charge carriers toward the bionanojunction for effective photostimulation. Funnels are constructed with indium-based rainbow quantum dots that are assembled in a graded energy profile. Implementation of a quantum funnel enhances the generated photoelectrochemical current 215% per unit absorbance in comparison with ungraded energy profile in a wireless and free-standing mode and facilitates optical neuromodulation of a single cell. This study indicates that the control of charge transport at nanoscale can lead to unconventional and effective neural interfaces.Publication Open Access Bidirectional optical neuromodulation using capacitive charge-transfer(The Optical Society (OSA) Publishing, 2020) Department of Electrical and Electronics Engineering; N/A; Department of Chemical and Biological Engineering; Department of Molecular Biology and Genetics; Melikov, Rustamzhon; Srivastava, Shashi Bhushan; Karatüm, Onuralp; Nizamoğlu, Sedat; Doğru-Yüksel, Itır Bakış; Dikbaş, Uğur Meriç; Kavaklı, İbrahim Halil; PhD Student; Researcher; PhD Student; Faculty Member; Master Student; Faculty Member; Department of Electrical and Electronics Engineering; Department of Chemical and Biological Engineering; Department of Molecular Biology and Genetics; Graduate School of Sciences and Engineering; College of Engineering; College of Sciences; N/A; N/A; N/A; 130295; N/A; N/A; 40319Artificial control of neural activity allows for understanding complex neural networks and improving therapy of neurological disorders. Here, we demonstrate that utilization of photovoltaic biointerfaces combined with light waveform shaping can generate safe capacitive currents for bidirectional modulation of neurons. The differential photoresponse of the biointerface due to double layer capacitance facilitates the direction control of capacitive currents depending on the slope of light intensity. Moreover, the strength of capacitive currents is controlled by changing the rise and fall time slope of light intensity. This approach allows for high-level control of the hyperpolarization and depolarization of membrane potential at single-cell level. Our results pave the way toward advanced bioelectronic functionalities for wireless and safe control of neural activity.Publication Open Access High performance white light-emitting diodes over 150 lm/W using near-unity-emitting quantum dots in a liquid matrix(American Chemical Society (ACS), 2022) N/A; N/A; Department of Electrical and Electronics Engineering; Department of Chemistry; Önal, Asım; Eren, Güncem Özgün; Sadeghi, Sadra; Melikov, Rustamzhon; Han, Mertcan; Karatüm, Onuralp; Özer, Melek Sermin; Jalali, Houman Bahmani; Doğru-Yüksel, Itır Bakış; Yılgör, İskender; Metin, Önder; Nizamoğlu, Sedat; PhD Student; PhD Student; Master Student; PhD Student; Faculty Member; Faculty Member; Faculty Member; Department of Electrical and Electronics Engineering; Department of Chemistry; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Koç University Boron and Advanced Materials Application and Research Center (KUBAM) / Koç Üniversitesi Bor ve İleri Malzemeler Uygulama ve Araştırma Merkezi (KUBAM); Graduate School of Sciences and Engineering; College of Sciences; College of Engineering; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; 24181; 46962; 130295In the next decade, we will witness the replacement of a majority of conventional light sources with light-emitting diodes (LEDs). Efficient LEDs other than phosphors can enhance their functionality and meet different lighting needs. Quantum dots (QDs) have high potential for future LED technology due to their sensitive band-gap tuning via the quantum confinement effect and compositional control, high photoluminescence quantum yield (PLQY), and mass-production capacity. Herein, we demonstrate white LEDs using QDs that reach over 150 lumens per electrical Watt. For that we synthesized green-and red-emitting ZnCdSe/ZnSe core/shell QDs by low-temperature nucleation, high-temperature shell formation, and postsynthetic trap-state removal. Their cadmium concentration is lower than 100 ppm, satisfying the current EU RoHS regulations, and their PLQY reaches a high level of 94%. The PLQY of QDs is maintained within the device on blue LED via liquid injection, and their integration at optimized optical densities leads to 129.6 and 170.4 lm/W for red-green-blue (RGB)-and green-blue (GB)-based white LEDs, respectively. Our simulations further showed that an efficiency level of over 230 lm/W is achievable using ultraefficient blue LED pumps. The simple fabrication and high performance of white LEDs using QD liquids show high promise for next-generation lighting devices.