Publication:
Multifunctional 3D-printed pollen grain-inspired hydrogel microrobots for on-demand anchoring and cargo delivery

dc.contributor.coauthorLee Yun Woo
dc.contributor.coauthorKim, Jae Kang
dc.contributor.coauthorBozuyuk, Uğur
dc.contributor.coauthorDoğan, Nihal Olcay
dc.contributor.coauthorKhan, Muhammad Turab Ali
dc.contributor.coauthorShiva, Anitha
dc.contributor.coauthorWild, Anna-Maria
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-11-09T23:12:18Z
dc.date.issued2023
dc.description.abstractWhile a majority of wireless microrobots have shown multi-responsiveness to implement complex biomedical functions, their functional executions are strongly dependent on the range of stimulus inputs, which curtails their functional diversity. Furthermore, their responsive functions are coupled to each other, which results in the overlap of the task operations. Here, a 3D-printed multifunctional microrobot inspired by pollen grains with three hydrogel components is demonstrated: iron platinum (FePt) nanoparticle-embedded pentaerythritol triacrylate (PETA), poly N-isopropylacrylamide (pNIPAM), and poly N-isopropylacrylamide acrylic acid (pNIPAM-AAc) structures. Each of these structures exhibits their respective targeted functions: responding to magnetic fields for torque-driven surface rolling and steering, exhibiting temperature responsiveness for on-demand surface attachment (anchoring), and pH-responsive cargo release. The versatile multifunctional pollen grain-inspired robots conceptualized here pave the way for various future medical microrobots to improve their projected performance and functional diversity.
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.indexedbyWOS
dc.description.issue10
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume35
dc.identifier.doi10.1002/adma.202209812
dc.identifier.issn0935-9648
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85146226233
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85146226233&doi=10.1002%2fadma.202209812&partnerID=40&md5=624175c7f88012ee15e7bfeb43390481
dc.identifier.wos911660200001
dc.keywordsHydrogel microrobots
dc.keywordsMedical microrobots
dc.keywordsMultifunctionality
dc.keywordsOn-demand attachment
dc.keywordsStimuli-responsive materials
dc.language.isoeng
dc.publisherJohn Wiley and Sons Inc
dc.relation.ispartofAdvanced Materials
dc.subjectChemistry, Chemistry, Physical and theoretical
dc.subjectNanoscience
dc.subjectNanotechnology
dc.subjectMaterials Science
dc.subjectCondensed matter
dc.titleMultifunctional 3D-printed pollen grain-inspired hydrogel microrobots for on-demand anchoring and cargo delivery
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorSitti, Metin
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Mechanical Engineering
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR04170.pdf
Size:
1.69 MB
Format:
Adobe Portable Document Format