Publication:
On the convergence of subgradient based blind equalization algorithm

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorErdoğan, Alper Tunga
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid41624
dc.date.accessioned2024-11-09T23:53:19Z
dc.date.issued2006
dc.description.abstractSubGradient based Blind Algorithm (SGBA) has recently been introduced [A.T. Erdogan, C. Kizilkale, Fast and low complexity blind equalization via subgradient projections, IEEE Trans. Signal Process. 53 (2005) 2513-2524; C. Kizilkale, A.T. Erdogan, A fast blind equalization method based on subgradient projections, Proceedings of IEEE ICASSP 2004, Montreal, Canada, vol. 4, pp. 873-876.] as a convex and low complexity approach for the equalization of communications channels. In this article, we analyze the convergence behavior of the SGBA algorithm for the case where the relaxation rule is used for the step size. Our analysis shows that the monotonic convergence curve for the mean square distance to the optimal point is bounded between two geometric-series curves, and the convergence rate is dependent on the eigenvalues of the correlation matrix of channel outputs. We also provide some simulation examples for the verification of our analytical results related to the convergence behavior. (c) 2006 Elsevier B.V. All rights reserved.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue12
dc.description.openaccessNO
dc.description.volume86
dc.identifier.doi10.1016/j.sigpro.2006.03.003
dc.identifier.eissn1879-2677
dc.identifier.issn0165-1684
dc.identifier.scopus2-s2.0-33749437282
dc.identifier.urihttp://dx.doi.org/10.1016/j.sigpro.2006.03.003
dc.identifier.urihttps://hdl.handle.net/20.500.14288/14989
dc.identifier.wos242182700014
dc.keywordsBlind equalization
dc.keywordsConvergence analysis
dc.keywordsConvex optimization
dc.keywordsSGBA
dc.keywordsSubgradient
dc.languageEnglish
dc.publisherElsevier Science Bv
dc.sourceSignal Processing
dc.subjectEngineering
dc.subjectElectrical electronic engineering
dc.titleOn the convergence of subgradient based blind equalization algorithm
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0003-0876-2897
local.contributor.kuauthorErdoğan, Alper Tunga
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files