Publication:
Novel nanostructured composites of silica aerogels with a metal organic framework

Placeholder

School / College / Institute

Organizational Unit
Organizational Unit

Program

KU Authors

Co-Authors

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

Novel nanostructured composites of silica aerogel with Cu-BTC were synthesized using a slightly modified version of the conventional sol-gel method used to synthesize silica aerogels. The composite materials had monolithic structures with blue color consisting of well dispersed microporous domains of Cu-BTC in the mesoporous inorganic silica aerogel network. The Cu-BTC content in the composites ranged from 5 to 30 weight percent and the total surface area of the composites ranged from 1025 to 1138 m(2)/g. The microporosity of the composites increased with the increasing amount of Cu-BTC indicating that the micropores of Cu-BTC were accessible and functional. XRD analysis indicated that Cu-BTC retained its crystal structure in the composite despite being immersed in a solution containing water, ethanol and tetraethylorthosilicate. Additionally, it was observed that increasing Cu-BTC content caused a decrease in the average desorption pore radius with a wider pore size distribution. Nitrogen adsorption isotherms for composites could be predicted using the experimentally obtained pure component isotherm for the silica aerogel, theoretically obtained isotherm for Cu-BTC and the weight fractions of the components within the composite material.

Source

Publisher

Elsevier

Subject

Chemistry, Chemistry, physical and theoretical, Nanoscience, Nanotechnology, Materials science

Citation

Has Part

Source

Microporous and Mesoporous Materials

Book Series Title

Edition

DOI

10.1016/j.micromeso.2012.11.040

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads

View PlumX Details