Publication:
Buoyancy-driven motion and breakup of viscous drops in constricted capillaries

dc.contributor.coauthorN/A
dc.contributor.departmentN/A
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorOlgaç, Ufuk
dc.contributor.kuauthorKayaalp, Arif Doruk
dc.contributor.kuauthorMuradoğlu, Metin
dc.contributor.kuprofileMaster Student
dc.contributor.kuprofileMaster Student
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mechanical Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.contributor.yokid46561
dc.date.accessioned2024-11-09T22:59:09Z
dc.date.issued2006
dc.description.abstractBuoyancy-driven motion and breakup of viscous drops in sinusoidally constricted channels are studied computationally using a finite-volume/front-tracking (FV/FT) method. Computational results are first compared with the available experimental data and then the conditions for a drop breakup are examined. The effects of the channel geometry, drop size and Bond number on drop breakup are investigated. It is found that the present computational results are in a good agreement with the available experimental data and drop breakup occurs in various modes depending on the channel geometry, the relative drop size and Bond number. It is observed that a drop breaks up into two or more drops when its size is larger than a critical value. It is also found that large drops undergo successive breakups to produce monodispersed small droplets. Critical non-dimensional drop size and critical capillary number for the onset of drop breakup are reported over a wide range of geometrical parameters and Bond numbers.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue9
dc.description.openaccessNO
dc.description.volume32
dc.identifier.doi10.1016/j.ijmultiphaseflow.2006.05.004
dc.identifier.issn0301-9322
dc.identifier.scopus2-s2.0-33748171051
dc.identifier.urihttp://dx.doi.org/10.1016/j.ijmultiphaseflow.2006.05.004
dc.identifier.urihttps://hdl.handle.net/20.500.14288/7849
dc.identifier.wos240760900003
dc.keywordsBuoyancy-driven motion
dc.keywordsDrop breakup
dc.keywordsConstricted channel
dc.keywordsFinite-volume/front-tracking method
dc.keywordsFront-tracking method
dc.keywordsCylindrical capillaries
dc.keywordsCreeping motion
dc.keywordsMultiphase flow
dc.keywordsPorous-media
dc.keywordsDynamics
dc.keywordsComputations
dc.keywordsBubbles
dc.keywordsTube
dc.keywordsEquations
dc.languageEnglish
dc.publisherPergamon-Elsevier Science Ltd
dc.sourceInternational Journal of Multiphase Flow
dc.subjectMechanics
dc.titleBuoyancy-driven motion and breakup of viscous drops in constricted capillaries
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0003-2240-9299
local.contributor.authorid0000-0002-1758-5418
local.contributor.kuauthorOlgaç, Ufuk
local.contributor.kuauthorKayaalp, Arif Doruk
local.contributor.kuauthorMuradoğlu, Metin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files