Publication:
A simple quantitative model of neuromodulation, part i: ion flow neural ion channels

dc.contributor.coauthorWerneck, Linda
dc.contributor.coauthorHan, Mertcan
dc.contributor.coauthorYildiz, Erdost
dc.contributor.coauthorKeip, Marc-Andre
dc.contributor.coauthorOrtiz, Michael
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.otherDepartment of Mechanical Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.date.accessioned2024-12-29T09:40:42Z
dc.date.issued2024
dc.description.abstractWe develop a simple model of ionic current through neuronal membranes as a function of membrane potential and extracellular ion concentration. The model combines a simplified Poisson-Nernst-Planck (PNP) model of ion transport through individual ion channels with channel activation functions calibrated from ad hoc in-house experimental data. The simplified PNP model is validated against bacterial gramicidin A ion channel data. The calibrated model accounts for the transport of calcium, sodium, potassium, and chloride and exhibits remarkable agreement with the experimentally measured current-voltage curves for the differentiated human neural cells.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessGreen Submitted
dc.description.publisherscopeInternational
dc.description.sponsorsThis work is funded by the German Research Foundation (Deutsche Forschungsgemeinschaft; DFG) within the Priority Program 2311, grant number 465186293, and the Max Planck Society. We furthermore gratefully acknowledge the support of the DFG under Germany's Excellence Strategy - EXC 2075 - 390740016. E.Y. has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no 101059593.
dc.description.volume182
dc.identifier.doi10.1016/j.jmps.2023.105457
dc.identifier.eissn1873-4782
dc.identifier.issn0022-5096
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85175869299
dc.identifier.urihttps://doi.org/10.1016/j.jmps.2023.105457
dc.identifier.urihttps://hdl.handle.net/20.500.14288/23390
dc.identifier.wos1111621900001
dc.keywordsUltrasound neuromodulation
dc.keywordsMultiscale modeling
dc.keywordsElectro-chemical coupling
dc.keywordsNeuron computational models
dc.languageen
dc.publisherPergamon-Elsevier Science Ltd
dc.relation.grantnoGerman Research Foundation (Deutsche Forschungsgemeinschaft
dc.relation.grantnoDFG) [465186293]
dc.relation.grantnoMax Planck Society
dc.relation.grantnoDFG under Germany's Excellence Strategy [EXC 2075, 390740016]
dc.relation.grantnoEuropean Union [101059593]
dc.sourceJournal of The Mechanics and Physics of Solids
dc.subjectMaterials science
dc.subjectMultidisciplinary
dc.subjectMechanics
dc.subjectPhysics
dc.subjectCondensed matter
dc.titleA simple quantitative model of neuromodulation, part i: ion flow neural ion channels
dc.typeJournal article
dspace.entity.typePublication
local.contributor.kuauthorSitti, Metin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files