Publication:
Estimation and detection for molecular MIMO Communications in the internet of bio-nano things

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorAkan, Özgür Barış
dc.contributor.kuauthorÇetinkaya, Oktay
dc.contributor.kuauthorBaydaş, Osman Tansel
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileResearcher
dc.contributor.kuprofileOther
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteN/A
dc.contributor.yokid6647
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:03:54Z
dc.date.issued2023
dc.description.abstractFor the Internet of Bio-Nano Things (IoBNT) applications demanding high transmission rates, a well-modeled Molecular Communication (MC) channel is essential. The existing studies proposing multiple-input and multiple-output (MIMO) models for MC, however, often make the unrealistic assumption of using ideal receivers with perfect absorption. Hence, this paper proposes a molecular MIMO channel model with spherical transmitters and partially-absorbing ligand receptor-based receivers underpinned by four unique parameters. For the non-analytical nature of the MIMO channel, we use a supervised learning algorithm to estimate the number of molecules in the reception space. We evaluate the root mean square error (RMSE) of our solution, which returns consistent results. The estimation is used for ligand-receptor binding statistics, in which the intersymbol inference (ISI) and molecular interference are considered. We also propose two techniques based on convolutional and recurrent neural networks (CNN & RNN) as alternatives to the generic threshold-based detection. Our detectors outperform the threshold-based technique; specifically, the CNN-based method improves the mean bit error rate (BER) performance three times.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue1
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsorshipAXA Research Fund (AXA)
dc.description.volume9
dc.identifier.doi10.1109/TMBMC.2023.3252943
dc.identifier.issn2332-7804
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85149868172&doi=10.1109%2fTMBMC.2023.3252943&partnerID=40&md5=65576bd8634d4c3b5f4aff93e191142f
dc.identifier.scopus2-s2.0-85149868172
dc.identifier.urihttps://dx.doi.org/10.1109/TMBMC.2023.3252943
dc.identifier.urihttps://hdl.handle.net/20.500.14288/8546
dc.identifier.wos1004208700013
dc.keywordsChannel estimation
dc.keywordsChannel Model
dc.keywordsChannel models
dc.keywordsDetection
dc.keywordsEstimation
dc.keywordsLigand Receptors
dc.keywordsMachine Learning
dc.keywordsMIMO
dc.keywordsMIMO communication
dc.keywordsMolecular Communication
dc.keywordsReceivers
dc.keywordsSymbols
dc.keywordsTransmitters Bit error rate
dc.keywordsChannel estimation
dc.keywordsLearning algorithms
dc.keywordsLearning systems
dc.keywordsLigands
dc.keywordsMIMO systems
dc.keywordsRecurrent neural networks
dc.keywordsTransmitters
dc.keywordsChannel modelling
dc.keywordsDetection
dc.keywordsLigand-receptor
dc.keywordsMachine-learning
dc.keywordsMolecular communication
dc.keywordsMultiple input and multiple outputs
dc.keywordsMultiple-input and multiple-output communication
dc.keywordsReceiver
dc.keywordsSymbol
dc.keywordsMean square error
dc.languageEnglish
dc.publisherIEEE
dc.sourceIEEE Transactions on Molecular, Biological, and Multi-Scale Communications
dc.subjectTelecommunications
dc.titleEstimation and detection for molecular MIMO Communications in the internet of bio-nano things
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0003-2523-3858
local.contributor.authoridN/A
local.contributor.authoridN/A
local.contributor.kuauthorAkan, Özgür Barış
local.contributor.kuauthorÇetinkaya, Oktay
local.contributor.kuauthorBaydaş, O. Tansel
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR05092.pdf
Size:
2.21 MB
Format:
Adobe Portable Document Format