Publication:
Understanding the potential of zeolite imidazolate framework membranes in gas separations using atomically detailed calculations

Placeholder

School / College / Institute

Organizational Unit

Program

KU Authors

Co-Authors

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

Zeolite imidazolate frameworks (ZIFs) offer considerable potential for gas separation applications due to their tunable pore sizes, large surface areas, high pore volumes, and good thermal and mechanical stabilities. although a significant number of ZIFs has been synthesized in the powder form to date, very little is currently known about the potential performance of ZIFs for membrane-based gas separation applications. in this work, we used atomically detailed calculations to predict the performance of 15 different ZIP materials both in adsorption-based and membrane-based separations of CH4/H-2, CO2/CH4, and CO2/H-2 mixtures. We predicted adsorption-based selectivity, working capacity, membrane-based selectivity, and gas permeability of ZIFs. Our results identified several ZIFs that can outperform traditional zeolite membranes and widely studied metal organic framework membranes in CH4/H-2, CO2/CH4, and CO2/H-2 separation processes. Finally, the accuracy of the mixing theories estimating mixture adsorption and diffusion based on single component data was tested.

Source

Publisher

amer Chemical Soc

Subject

Chemistry, Physical, Nanoscience, Nanotechnology, Materials science

Citation

Has Part

Source

Journal of Physical Chemistry C

Book Series Title

Edition

DOI

10.1021/jp305684d

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads

View PlumX Details