Publication:
Modeling ionic reactions at interstellar temperatures: the case of NH2- + H-2 double left right arrow NH3 + H-

dc.contributor.coauthorGianturco, F. A.
dc.contributor.coauthorSatta, M.
dc.contributor.coauthorWester, R.
dc.contributor.departmentDepartment of Chemistry
dc.contributor.kuauthorYurtsever, İsmail Ersin
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Chemistry
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokid7129
dc.date.accessioned2024-11-09T23:07:15Z
dc.date.issued2019
dc.description.abstractStructural features and enthalpy details are presented for the title reactions, both for the exothermic (forward) path to NH3 formation and for the endothermic (reverse) reaction to NH2- formation. Both pathways have relevance for the nitrogen chemistry in the interstellar medium (ISM). They are also helpful to document the possible role of H- in molecular clouds at temperatures well below room temperature. The structural calculations are carried out using different ab initio methods and are further employed to obtain the reaction rates down to the interstellar temperatures detected in earlier experiments. The reaction rates are obtained from the computed minimum energy path (MEP) using the variational transition-state theory (VTST) approach. The results indicate very good accord with experiment results at room temperature, while measured low temperature data down to 8 K are well described using an appropriately modified VTST approach. This is done by employing a temperature-dependent scaling, from room temperature conditions down to the lower ISM temperatures, which acknowledges the noncanonical behavior of the fast, barrierless exothermic reaction. The reasons for this behavior and the need for improving on the VTST method when used away from room temperatures are discussed.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue46
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsorshipAustrian Science Fund (FWF) [29558-N36]
dc.description.sponsorshipAustrian Science Fund (FWF) [P29558] Funding Source: Austrian Science Fund (FWF) F.A.G. and R.W. acknowledge the support by the Austrian Science Fund (FWF), Project No. 29558-N36.
dc.description.volume123
dc.identifier.doi10.1021/acs.jpca.9b07317
dc.identifier.eissn1520-5215
dc.identifier.issn1089-5639
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85074907217
dc.identifier.urihttp://dx.doi.org/10.1021/acs.jpca.9b07317
dc.identifier.urihttps://hdl.handle.net/20.500.14288/9109
dc.identifier.wos499738900004
dc.keywordsAmmonia Formation
dc.keywordsGas Temperature
dc.keywordsChemistry
dc.keywordsNitrogen
dc.languageEnglish
dc.publisherAmer Chemical Soc
dc.sourceJournal of Physical Chemistry A
dc.subjectChemistry, physical and theoretical
dc.subjectPhysics
dc.subjectAtomic structure
dc.subjectMolecular dynamics
dc.subjectChemical engineering
dc.titleModeling ionic reactions at interstellar temperatures: the case of NH2- + H-2 double left right arrow NH3 + H-
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-9245-9596
local.contributor.kuauthorYurtsever, İsmail Ersin
relation.isOrgUnitOfPublication035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isOrgUnitOfPublication.latestForDiscovery035d8150-86c9-4107-af16-a6f0a4d538eb

Files