Publication:
A new venue toward predicting the role of hydrogen embrittlement on metallic materials

dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorBal, Burak
dc.contributor.kuauthorŞahin, İbrahim
dc.contributor.kuauthorUzun, Alper
dc.contributor.kuauthorCanadinç, Demircan
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.contributor.yokid59917
dc.contributor.yokid23433
dc.date.accessioned2024-11-09T23:22:35Z
dc.date.issued2016
dc.description.abstractThis paper presents a new crystal plasticity formulation to predict the role of hydrogen embrittlement on the mechanical behavior of metallic materials. Specifically, a series of experiments were carried out to monitor the role of hydrogen interstitial content on the uniaxial tensile deformation response of iron alloyed with hydrogen, and the classical Voce hardening scheme was modified to account for the shear stresses imposed on arrested dislocations due to the surrounding hydrogen interstitials. The proposed set of physically grounded crystal plasticity formulations successfully predicted the deformation response of iron in the presence of different degrees of hydrogen embrittlement. Moreover, the combined experimental and modeling effort presented herein opens a new venue for predicting the alterations in the performance of metallic materials, where the hydrogen embrittlement is unavoidable.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue11
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsorshipKoc University TUPRAS Energy Center (KUTEM) seed funding program
dc.description.sponsorshipScience Academy of Turkey This study was supported by the Koc University TUPRAS Energy Center (KUTEM) seed funding program. XRD analyses were carried out at Koc University Surface Technology and Science Center (KUYTAM). A.U. acknowledges the BAGEP Award by the Science Academy of Turkey.
dc.description.volume47A
dc.identifier.doi10.1007/s11661-016-3708-z
dc.identifier.eissn1543-1940
dc.identifier.issn1073-5623
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-84982151881
dc.identifier.urihttp://dx.doi.org/10.1007/s11661-016-3708-z
dc.identifier.urihttps://hdl.handle.net/20.500.14288/11091
dc.identifier.wos385022900018
dc.keywordsCrystal plasticity model
dc.keywordsCrack-tip plasticity
dc.keywordsAustenitic stainless-steels
dc.keywordsMechanical-properties
dc.keywordsDislocation density
dc.keywordsFlow localization
dc.keywordsSingle-crystals
dc.keywordsGrowth-behavior
dc.keywordsVoid growts
dc.keywordsBcc iron
dc.languageEnglish
dc.publisherSpringer
dc.sourceMetallurgical And Materials Transactions A-Physical Metallurgy And Materials Science
dc.subjectMaterials science
dc.subjectEngineering
dc.subjectMetallurgy metallurgical engineering
dc.titleA new venue toward predicting the role of hydrogen embrittlement on metallic materials
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-7389-9155
local.contributor.authorid0000-0001-9321-9906
local.contributor.authorid0000-0001-7024-2900
local.contributor.authorid0000-0001-9961-7702
local.contributor.kuauthorBal, Burak
local.contributor.kuauthorŞahin, İbrahim
local.contributor.kuauthorUzun, Alper
local.contributor.kuauthorCanadinç, Demircan
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files