Publication:
Machine learning and explainable artificial intelligence to predict pathologic stage in men with localized prostate cancer

dc.contributor.coauthorSemwal, Hemal
dc.contributor.coauthorLadbury, Colton
dc.contributor.coauthorSabbagh, Ali
dc.contributor.coauthorMohamad, Osama
dc.contributor.coauthorAmini, Arya
dc.contributor.coauthorWong, Jeffrey
dc.contributor.coauthorLi, Yun Rose
dc.contributor.coauthorGlaser, Scott
dc.contributor.coauthorYuh, Bertram
dc.contributor.coauthorDandapani, Savita
dc.contributor.departmentKUH (Koç University Hospital)
dc.contributor.kuauthorTilki, Derya
dc.contributor.schoolcollegeinstituteKUH (KOÇ UNIVERSITY HOSPITAL)
dc.date.accessioned2025-03-06T21:00:22Z
dc.date.issued2024
dc.description.abstractBackgroundThough several nomograms exist, machine learning (ML) approaches might improve prediction of pathologic stage in patients with prostate cancer. To develop ML models to predict pathologic stage that outperform existing nomograms that use readily available clinicopathologic variables.MethodsPatients with prostate adenocarcinoma who underwent surgery were identified in the National Cancer Database. Seven ML models were trained to predict organ-confined (OC) disease, extracapsular extension, seminal vesicle invasion (SVI), and lymph node involvement (LNI). Model performance was measured using area under the curve (AUC) on a holdout testing data set. Clinical utility was evaluated using decision curve analysis (DCA). Performance metrics were confirmed on an external validation data set.ResultsThe ML-based extreme gradient boosted trees model achieved the best performance with an AUC of 0.744, 0.749, 0.816, 0.811 for the OC, ECE, SVI, and LNI models, respectively. The MSK nomograms achieved an AUC of 0.708, 0.742, 0.806, 0.802 for the OC, ECE, SVI, and LNI models, respectively. These models also performed the best on DCA. Findings were consistent on both a holdout internal validation data set as well as an external validation data set.ConclusionsOur ML models better predicted pathologic stage relative to existing nomograms at predicting pathologic stage. Accurate prediction of pathologic stage can help oncologists and patients determine optimal definitive treatment options for patients with prostate cancer.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1002/pros.24793
dc.identifier.eissn1097-0045
dc.identifier.issn0270-4137
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85206135301
dc.identifier.urihttps://doi.org/10.1002/pros.24793
dc.identifier.urihttps://hdl.handle.net/20.500.14288/27857
dc.identifier.wos1330420600001
dc.keywordsExplainable artificial intelligence (XAI)
dc.keywordsMachine learning
dc.keywordsNomograms
dc.keywordsPathologic stage
dc.keywordsProstate cancer
dc.keywordsSHapley additive exPlanations (SHAP)
dc.language.isoeng
dc.publisherWiley
dc.relation.ispartofProstate
dc.subjectEndocrinology and metabolism
dc.subjectUrology and nephrology
dc.titleMachine learning and explainable artificial intelligence to predict pathologic stage in men with localized prostate cancer
dc.typeJournal Article
dc.type.otherEarly access
dspace.entity.typePublication
local.contributor.kuauthorTilki, Derya
local.publication.orgunit1KUH (KOÇ UNIVERSITY HOSPITAL)
local.publication.orgunit2KUH (Koç University Hospital)
relation.isOrgUnitOfPublicationf91d21f0-6b13-46ce-939a-db68e4c8d2ab
relation.isOrgUnitOfPublication.latestForDiscoveryf91d21f0-6b13-46ce-939a-db68e4c8d2ab
relation.isParentOrgUnitOfPublication055775c9-9efe-43ec-814f-f6d771fa6dee
relation.isParentOrgUnitOfPublication.latestForDiscovery055775c9-9efe-43ec-814f-f6d771fa6dee

Files