Publication: Anticyclotomic p-ordinary Iwasawa theory of elliptic modular forms
| dc.contributor.coauthor | Lei, Antonio | |
| dc.contributor.department | Department of Mathematics | |
| dc.contributor.kuauthor | Faculty Member, Büyükboduk, Kazım | |
| dc.contributor.schoolcollegeinstitute | College of Sciences | |
| dc.date.accessioned | 2024-11-10T00:09:02Z | |
| dc.date.issued | 2018 | |
| dc.description.abstract | This is the first in a series of articles where we will study the Iwasawa theory of an elliptic modular form f along the anticyclotomic Z(p)-tower of an imaginary quadratic field K where the prime p splits completely. Our goal in this portion is to prove the Iwasawa main conjecture for suitable twists of f assuming that f is p-ordinary, both in the definite and indefinite setups simultaneously, via an analysis of Beilinson-Flach elements. | |
| dc.description.indexedby | WOS | |
| dc.description.indexedby | Scopus | |
| dc.description.issue | 4 | |
| dc.description.openaccess | NO | |
| dc.description.publisherscope | International | |
| dc.description.sponsoredbyTubitakEu | N/A | |
| dc.description.volume | 30 | |
| dc.identifier.doi | 10.1515/forum-2016-0189 | |
| dc.identifier.eissn | 1435-5337 | |
| dc.identifier.issn | 0933-7741 | |
| dc.identifier.quartile | Q3 | |
| dc.identifier.scopus | 2-s2.0-85039076777 | |
| dc.identifier.uri | https://doi.org/10.1515/forum-2016-0189 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14288/17061 | |
| dc.identifier.wos | 437914900007 | |
| dc.keywords | Anticyclotomic Iwasawa theory | |
| dc.keywords | Elliptic modular forms | |
| dc.keywords | Ordinary primes | |
| dc.language.iso | eng | |
| dc.publisher | De Gruyter | |
| dc.relation.ispartof | Forum Mathematicum | |
| dc.subject | Mathematics | |
| dc.subject | Applied mathematics | |
| dc.title | Anticyclotomic p-ordinary Iwasawa theory of elliptic modular forms | |
| dc.type | Journal Article | |
| dspace.entity.type | Publication | |
| local.contributor.kuauthor | Büyükboduk, Kazım | |
| local.publication.orgunit1 | College of Sciences | |
| local.publication.orgunit2 | Department of Mathematics | |
| relation.isOrgUnitOfPublication | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe | |
| relation.isParentOrgUnitOfPublication | af0395b0-7219-4165-a909-7016fa30932d | |
| relation.isParentOrgUnitOfPublication.latestForDiscovery | af0395b0-7219-4165-a909-7016fa30932d |
