Publication:
Low-cost, air-processed quantum dot solar cells via diffusion-controlled synthesis

dc.contributor.coauthorDurmuşoğlu, Emek G.
dc.contributor.coauthorSelopal, Gurpreet S.
dc.contributor.coauthorMohammadnezhad, Mahyar
dc.contributor.coauthorZhang, Hui
dc.contributor.coauthorBarba, David
dc.contributor.coauthorSun, Shuhui
dc.contributor.coauthorZhao, Haiguang
dc.contributor.coauthorWang, Zhiming M.
dc.contributor.coauthorRosei, Federico
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Chemistry
dc.contributor.departmentDepartment of Chemistry
dc.contributor.kuauthorDağtepe, Pınar
dc.contributor.kuauthorAcar, Havva Funda Yağcı
dc.contributor.kuprofileN/A
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteN/A
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokidN/A
dc.contributor.yokid178902
dc.date.accessioned2024-11-09T22:55:57Z
dc.date.issued2020
dc.description.abstractDespite significant advances in the development of high-efficiency and stable quantum dot (QD) solar cells (QDSCs), recent synthetic and fabrication routes still require improvements to render QDSCs commercially feasible. Here, we describe a low-cost, industrially viable fabrication method of QDSCs under an ambient atmosphere (humid air and room temperature) using stable, high-quality, and small-sized PbS QDs prepared with low-cost, greener precursors [i.e., thioacetamide (TAA)] compared to the widely used bis(trimethylsilyl)sulfide [(TMS)(2)S], at low temperatures without requiring any stringent conditions. The low reaction temperature, medium reactivity of TAA, and diffusion-controlled particle growth adopted in this approach provide an opportunity to synthesize ultrasmall (emission peak similar to 700 nm) to larger PbS QDs (emission peak similar to 1050 nm). This also enables well-controlled large-scale (multigram) synthesis with a rough estimated production cost of PbS of 8.11 $ per gram (based on materials cost), which is the lowest among the available PbS QDs produced using wet chemistry routes. QDSCs fabricated using 3.25 nm PbS QDs (bandgap 1.29 eV) under ambient conditions yield a high circuit current density (J(SC)) of 32.4 mA/cm(2) (one of the highest values of J(SC) ever reported) with a power conversion efficiency of 7.8% under 1 sun simulated sunlight at AM 1.5 G (100 mW/cm(2)). These devices exhibit better photovoltaic performance compared to devices fabricated with more traditional PbS QDs synthesized with (TMS)(2)S under an ambient atmosphere, confirming the quality of PbS QDs produced with our method. The diffusion-controlled TAA-based synthetic route developed herein is found to be very promising for synthesizing size-tunable PbS QDs for photovoltaic and other optoelectronic applications.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue32
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsorshipNSERC
dc.description.sponsorshipCanada Research Chairs program
dc.description.sponsorshipTUBITAKInternational Postdoctoral Research Fellowship Program [1059B191601648]
dc.description.sponsorshipKuantag A. S.
dc.description.sponsorshipUNESCO Chair in MATECSS
dc.description.sponsorshipUniversity of Electronic Science and Technology of China
dc.description.sponsorshipChina Post doctoral Science Foundation [Y02006023607941]
dc.description.sponsorshipQingdao University
dc.description.sponsorshipNatural Science Foundation of Shandong Province [ZR2018MB001] Federico Rosei acknowledges NSERC for funding through the individual Discovery Grants program and is grateful to the Canada Research Chairs program for funding and partial salary support. Emek G. Durmusoglu acknowledges TUBITAKInternational Postdoctoral Research Fellowship Program (no. 1059B191601648). Emek G. Durmusoglu and Havva Yag.ci Acar acknowledge Kuantag A. S. for funding. Gurpreet S. Selopal acknowledges the UNESCO Chair in MATECSS for a PDF Excellence Scholarship and funding from the University of Electronic Science and Technology of China and the China Post doctoral Science Foundation (grant no. Y02006023607941). Haiguang Zhao acknowledges the start of funding support from Qingdao University and the funding from the Natural Science Foundation of Shandong Province (ZR2018MB001).
dc.description.volume12
dc.identifier.doi10.1021/acsami.0c06694
dc.identifier.eissn1944-8252
dc.identifier.issn1944-8244
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85089710603
dc.identifier.urihttp://dx.doi.org/10.1021/acsami.0c06694
dc.identifier.urihttps://hdl.handle.net/20.500.14288/7278
dc.identifier.wos562182900052
dc.keywordsQuantum dot
dc.keywordsNanop Lead sulfide
dc.keywordsStability
dc.keywordsSolar cell high-performance
dc.keywordsLead sulfide
dc.keywordsUltrasmall pbs
dc.keywordsLuminescent
dc.keywordsNanocrystals
dc.keywordsMonodisperse
dc.keywordsEfficiency
dc.keywordsFacile
dc.keywordsRoute
dc.languageEnglish
dc.publisherAmer Chemical Soc
dc.sourceAcs Applied Materials & Interfaces
dc.subjectNanoscience
dc.subjectNanotechnology
dc.subjectMaterials science
dc.titleLow-cost, air-processed quantum dot solar cells via diffusion-controlled synthesis
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0001-5601-8814
local.contributor.kuauthorDağtepe, Pınar
local.contributor.kuauthorAcar, Havva Funda Yağcı
relation.isOrgUnitOfPublication035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isOrgUnitOfPublication.latestForDiscovery035d8150-86c9-4107-af16-a6f0a4d538eb

Files