Publication:
The near and far of a pair of magnetic capillary disks

dc.contributor.coauthorKoens, Lyndon
dc.contributor.coauthorWang, Wendong
dc.contributor.coauthorLauga, Eric
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.yokid297104
dc.date.accessioned2024-11-09T11:46:53Z
dc.date.issued2019
dc.description.abstractControl on microscopic scales depends critically on our ability to manipulate interactions with different physical fields. The creation of micro-machines therefore requires us to understand how multiple fields, such as surface capillary or electro-magnetic fields, can be used to produce predictable behaviour. Recently, a spinning micro-raft system was developed that exhibited both static and dynamic self-assembly [Wang et al., Sci. Adv., 2017, 3, e1602522]. These rafts employed both capillary and magnetic interactions and, at a critical driving frequency, would suddenly change from stable orbital patterns to static assembled structures. In this paper, we explain the dynamics of two interacting micro-rafts through a combination of theoretical models and experiments. This is first achieved by identifying the governing physics of the orbital patterns, the assembled structures, and the collapse separately. We find that the orbital patterns are determined by the short range capillary interactions between the disks, while the explanations of the other two behaviours only require the capillary far field. Finally we combine the three models to explain the dynamics of a new micro-raft experiment.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue7
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Union (European Union)
dc.description.sponsorshipEuropean Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme
dc.description.sponsorshipMax Planck Society
dc.description.sponsorshipAlexander von Humboldt Foundation
dc.description.versionAuthor's final manuscript
dc.description.volume15
dc.formatpdf
dc.identifier.doi10.1039/c8sm02215a
dc.identifier.eissn1744-6848
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01910
dc.identifier.issn1744-683X
dc.identifier.linkhttps://doi.org/10.1039/c8sm02215a
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85061500290
dc.identifier.urihttps://hdl.handle.net/20.500.14288/545
dc.identifier.wos458669300024
dc.keywordsMaterials science, multidisciplinary
dc.keywordsPhysics, multidisciplinary
dc.keywordsPolymer science
dc.keywordsSelf assembly
dc.keywordsAssembled structures
dc.keywordsCapillary interactions
dc.keywordsDriving frequencies
dc.keywordsDynamic self assembly
dc.keywordsMagnetic interactions
dc.keywordsMicroscopic scale
dc.keywordsPhysical field
dc.keywordsThree models
dc.keywordsMagnetism
dc.languageEnglish
dc.publisherRoyal Society of Chemistry (RSC)
dc.relation.grantno682754
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8595
dc.sourceSoft Matter
dc.subjectChemistry, physical
dc.titleThe near and far of a pair of magnetic capillary disks
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-8249-3854
local.contributor.kuauthorSitti, Metin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8595.pdf
Size:
8.17 MB
Format:
Adobe Portable Document Format